精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,点E在AB的延长线上,∠E=45°,若AB=8,求BE的长.

解:∵∠ACB=90°,∠A=30°,AB=8,
∴BC=AB=×8=4,
∵CD⊥AB,
∴∠BCD+∠ABC=90°,
又∵∠A+∠ABC=90°,
∴∠BCD=∠A=30°,
∴BD=BC=×4=2,
在Rt△BCD中,CD===2
∵∠E=45°,
∴∠DCE=90°-45°=45°,
∴∠DCE=∠E,
∴DE=CD=2
∴BE=DE-BD=2-2.
分析:根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再根据同角的余角相等求出∠BCD=30°,然后求出BD,根据勾股定理列式求出CD的长,根据等角对等边求出DE=CD,再根据BE=DE-BD进行计算即可得解.
点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,同角的余角相等的性质,等角对等边的性质,熟记各性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案