【题目】如图,在大小为4×4的正方形网格中,是相似三角形的是( )
A. ①和② B. ②和③ C. ①和③ D. ②和④
【答案】C
【解析】分别求得四个三角形三边的长,再根据三角形三边分别成比例的两三角形相似来判定.解:∵①中的三角形的三边分别是:2,,;
②中的三角形的三边分别是:3,,;
③中的三角形的三边分别是:2,2,2;
④中的三角形的三边分别是:3,,4;
∵①与③中的三角形的三边的比为:1:
∴①与③相似.
故选C.
“点睛”此题主要考查相似三角形的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是线段AE上一点,△ABC、△CDE都是等边三角形,AD与BC交于点M,BE与CD交于点N。
试说明:(1)AD=BE;(2)MN//AE。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )
A.0.1008×106
B.1.008×106
C.1.008×105
D.10.08×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读新知:移项且合并同类项之后,只含有偶次项的四次方程称作双二次方程.其一般形式为ax4+bx2+c=0(a≠0),一般通过换元法解之,具体解法是设 x2=y,则原四次方程化为一元二次方程:ay2+by+c=0,解出y之后代入x2=y,从而求出x的值.
例如解:4x4-8x2+3=0
解:设x2=y,则原方程可化为:4y2-8y+3=0
∵a=4,b=-8,c=3
∴b2-4ac=(-8)2-4×4×3=16>0
∴y==
∴y1=, y2=
∴当y1=时,x2=. ∴x1=,x2=-;
当y1=时,x2=. ∴x3=,x4=-.
小试牛刀:请你解双二次方程:x4-2x2-8=0
归纳提高:
思考以上解题方法,试判断双二次方程的根的情况,下列说法正确的是____________(选出所有的正确答案)
①当b2-4ac≥0时,原方程一定有实数根;
②当b2-4ac<0时,原方程一定没有实数根;
③当b2-4ac≥0,并且换元之后的一元二次方程有两个正实数根时,原方程有4个实数根,换元之后的一元二次方程有一个正实数根一个负实数根时,原方程有2个实数根;
④原方程无实数根时,一定有b2-4ac<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com