精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点的坐标为,点轴上,是线段的中点.将线段绕着点顺时针方向旋转,得到线段,连结

(1)判断的形状,并简要说明理由;
(2)当时,试问:以为顶点的四边形能否为平行四边形?若能,求出相应的 的值?若不能,请说明理由;
(3)当为何值时,相似?
(1)证明见解析;(2)当时,以为顶点的四边形为平行四边形,理由见解析;(3)

试题分析:(1)根据旋转的性质可得PB=PC,∠PBC=90°,故△PBC是等腰直角三角形;
(2)以P、O、B、C为顶点的四边形为平等四边形:因为,所以OB∥PC,又点B是PA的中点,所以OB=BP=PC.故四边形POBC是平等四边形.此时有,即.即,从而可求t的值;
(3)由题意可知,, 分两种情况讨论:当时,,此时 ;当时,,此时;因此,当时,相似
试题解析:(1)△PBC是等腰直角三角形.
∵线段PB绕着点P顺时针方向旋转90°,得到线段PC
∴PB=PC,∠BPC=90°,
∴△PBC是等腰直角三角形.
(2)当OB⊥BP时,以P、O、B、C为顶点的四边形为平行四边形.
∵∠OBP=∠BPC=90°
∴OB∥PC,
∵B是PA的中点

∴四边形POBC是平行四边形
当OB⊥BP时,有

(不合题意)
∴当t=2时,以P、O、B、C为顶点的四边形为平行四边形.
(3)由题意可知,
时,,此时
 
时,,此时

∴当时,相似
考点: 1.等腰直角三角形的判定;2.平等四边形的判定;3.相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
                                         
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,

因为△EGH与△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因为△EFH与△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以SDBE=SABD
因为△BDH与△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四边形ABCD
即S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢                       
验证你的猜想:

(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为:                            (不必写出求解过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,已知点(﹣4,2),(﹣2,﹣2),以原点为位似中心,把△缩小,所得三角形与△的相似比为,则点的对应点′的坐标是
A.(﹣2,1)B.(﹣8,4)
C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC∽△DEF,∠A=70°,∠C=50°,则∠E=    °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在等腰梯形ABCD中,下底BC是上底AD的两倍,E为BC的中点,R为DC的中点,BR交AE于点P,则EP:AP=
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果,那么的值是(      )
A.B.C.D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2=         ,AnBn=            .(n为正整数)

查看答案和解析>>

同步练习册答案