精英家教网 > 初中数学 > 题目详情
(2008•毕节地区)如图,已知AD是△ABC的中线,E是AD的中点,CE的延长线交AB于F,求AF:AB的值.

【答案】分析:本题可通过构建三角形求相似来得出所求的条件.过点A作AM∥BC交CF的延长线于M.不难得出AM=BC,题中根据已知条件我们不难证得△AMF∽△BCF,那么AM:BC=AF:FB,可得出BF=2AF,AB=3AF,因此AF:AB=1:3.
解答:解:过点A作AM∥BC交CF的延长线于M(如图)
∴∠M=∠ECD,
∵AE=DE,∠AEM=∠DEC,
∴△AEM≌△DEC,
∴AM=CD=BC,
∵AM∥BC,
∴△AMF∽△BCF,
=
=,即BF=2AF,
∴AB=BF+AF=3AF,
∴AF:AB=1:3.
点评:本题主要考查了相似三角形的判定和性质;要注意题中构建相似三角形的方法.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年贵州省毕节地区中考数学试卷(解析版) 题型:解答题

(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年贵州省毕节地区中考数学试卷(解析版) 题型:选择题

(2008•毕节地区)把函数y=x2的图象向右平移两个单位,再向下平移一个单位得到的函数关系式是( )
A.y=(x+2)2-1
B.y=(x-2)2-1
C.y=(x+2)2+1
D.y=(x-2)2+1

查看答案和解析>>

科目:初中数学 来源:2005年甘肃省中考数学试卷(课标卷)(解析版) 题型:解答题

(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

同步练习册答案