【题目】如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB= ,EF=2,∠H=120°,则DN的长为( )
A.
B.
C.﹣
D.2 ﹣
【答案】C
【解析】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP= CD= ,△GCP为直角三角形,
∵四边形EFGH是菱形,∠EHG=120°,
∴GH=EF=2,∠OHG=60°,EG⊥FH,
∴OG=GHsin60°=2× = ,由折叠的性质得:CG=OG= ,OM=CM,∠MOG=∠MCG,∴PG= = ,
∵OG∥CM,
∴∠MOG+∠OMC=180°,
∴∠MCG+∠OMC=180°,
∴OM∥CG,
∴四边形OGCM为平行四边形,
∵OM=CM,
∴四边形OGCM为菱形,
∴CM=OG= ,
根据题意得:PG是梯形MCDN的中位线,
∴DN+CM=2PG= ,∴DN= ﹣ ;
故选:C.
延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG= ,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.
科目:初中数学 来源: 题型:
【题目】某公司生产的商品市场指导价为每千克150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量p(千克)与销售价格浮动的百分点x之间的函数关系为p=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每千克商品的成本为多少元?
(2)当该公司的商品定价为多少元时,日销售利润为576元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一千克商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣1时,扣除捐赠后的日销售利润随x的增大而减小,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D、E两点分别在AC、BC上,DE为BC的中垂线,BD为∠ADE的角平分线.若∠A=58°,则∠ABD的度数为何?( )
A.58
B.59
C.61
D.62
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的矩形ABCD中,E为 的中点,有一圆过C、D、E三点,且此圆分别与 、 相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下: (甲) 作∠DEC的角平分线L,作 的中垂线,交L于O点,则O即为所求;(乙) 连接 、 ,两线段交于一点O,则O即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…Pn…,记纸板Pn的面积为Sn,则S2018-S2019的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为 ;④AD2+BE2﹣2OP2=2DPPE,其中所有正确结论的序号是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某校课外体育兴趣小组射击队日常训练中,教练为了掌握同学们一阶段以来的射击训练情况,对射击小组进行了射击测试,根据他们某次射击的测试数据绘制成不完整的条形统计图及扇形统计图如图所示:
(I)请补全条形统计图;
(II)填空:该射击小组共有____个同学,射击成绩的众数是_____,中位数是____;
(III)根据上述数据,小明同学说“平均成绩与中位数成绩相同”,试判断小明的说法是否正确?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表
分数/分 | 人数/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=,一动点C在直线l上移动.
(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.
(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com