精英家教网 > 初中数学 > 题目详情
二次函数的部分对应值如下表:


















二次函数图象的对称轴为      对应的函数值       
1,-8
①∵x=﹣3和x=5时,y=7,∴对称轴x==1;
②x=2的点关于对称轴x=1对称的点为x=0,∵x=0时,y=﹣8,∴x=2时,y=﹣8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某工厂生产的某种产品按质量分为个档次,生产第一档次(即最低档次)的产品一天生产件,每件利润元,每提高一个档次,利润每件增加元.
(1)每件利润为元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天产量减少件.若生产第档的产品一天的总利润为元(其中为正整数,且),求出关于的函数关系式;若生产某档次产品一天的总利润为元,该工厂生产的是第几档次的产品?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;
(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的公共点。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线分别交轴,轴于两点,以为边作矩形的中点.以为斜边端点作等腰直角三角形,点在第一象限,设矩形重叠部分的面积为
(1)求点的坐标;
(2)当值由小到大变化时,求的函数关系式;
(3)若在直线上存在点,使等于,求出的取值范围;
(4)在值的变化过程中,若为等腰三角形,请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒个单位的速度运动,设运动时间为t秒.在直线OB 上取两点M、N作等边△PMN.
(1)求当等边△PMN的顶点M运动到与点O重合时t的值.
(2)求等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在Rt△AOB 内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知二次函数的图像与轴相交于点A、B,顶点为C,点D在这个二次函数图像的对称轴上,若四边形ABCD时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下面四个结论中正确的结论有(  )
①ac<0;②ab>0;③2a<b;④a+c>b;
⑤4a+2b+c>0;⑥a+b+c>0.
A.两个B.三个C.四个D.五个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象与轴有交点,则的取值范围是【  】
A.B.C.D.

查看答案和解析>>

同步练习册答案