【题目】如图,在ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.
(1)若∠F=40°,求∠A的度数;
(2)若AB=10,BC=16,CE⊥AD,求ABCD的面积.
【答案】
(1)
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=40°,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=40°,
∴∠A=180°﹣40°﹣40°=100°
(2)
解:∵∠AEB=∠ABE,
∴AE=AB=10,
∵四边形ABCD是平行四边形,
∴AD=BC=16,CD=AB=10,
∴DE=AD﹣AE=6,
∵CE⊥AD,
∴CE=8,
∴ABCD的面积=ADCE=16×8=128
【解析】(1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=40°,证出∠AEB=∠ABE=40°,由三角形内角和定理求出结果即可;(2)求出DE,由勾股定理求出CE,即可得出结果.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
(1)求证:CF为⊙O的切线;
(2)当BF=5,时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=5,以顶点B为圆心,边BC长为半径画弧,交AD边于点E,连结BE,过C点作CF⊥BE于F.
(1)求证:△ABE≌△FCB;
(2)求EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;对学习较感兴趣;对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与直线:交于点,点的横坐标为,直线与轴的交点为,将直线向上平移后得到直线,直线刚好经过抛物线与轴正半轴的交点和与轴的交点.
(1)直接写出点和点的坐标,并求出点的坐标;
(2)若点是抛物线第一象限内的一个动点,连接,交直线于点,连接和.设的面积为,当取得最大值时,求出此时点的坐标及的最大值;
(3)如图,动点以每秒个单位长度的速度从点出发,沿射线运动;同时,动点以每秒个单位长度的速度从点出发,沿射线运动,设运动时间为().过点作轴,交抛物线于点,当点、、所组成的三角形是直角三角形时,直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com