【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO , 求点D的坐标.
【答案】
(1)解:∵OB=4,OE=2,
∴BE=OB+OE=6.
∵CE⊥x轴,
∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,
∴CE=BEtan∠ABO=6× =3,
结合函数图象可知点C的坐标为(﹣2,3).
∵点C在反比例函数y= 的图象上,
∴m=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣
(2)解:∵点D在反比例函数y=﹣ 第四象限的图象上,
∴设点D的坐标为(n,﹣ )(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,
∴OA=OBtan∠ABO=4× =2.
∵S△BAF= AFOB= (OA+OF)OB= (2+ )×4=4+ .
∵点D在反比例函数y=﹣ 第四象限的图象上,
∴S△DFO= ×|﹣6|=3.
∵S△BAF=4S△DFO,
∴4+ =4×3,
解得:n= ,
经验证,n= 是分式方程4+ =4×3的解,
∴点D的坐标为( ,﹣4).
【解析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣ )(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF , 根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.
【考点精析】通过灵活运用比例系数k的几何意义,掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB
(1)请用尺规按下列要求作图:
①延长线段AB到C,使BC=AB,
②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)
(2)请直接回答线段BD与线段AC长度之间的大小关系
(3)如果AB=2cm,请求出线段BD和CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:小华遇到这样一个问题:
已知:如图1,在△ABC中,三边的长分别为AB= ,AC= ,BC=2,求∠A的正切值.
小华是这样解决问题的:
如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.
(1)如图2,△DEF中与∠A相等的角为 , ∠A的正切值为 .
(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2 ,LN=2 ,求∠N的正切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.
(1)如图2①,若点H在线段OB时,则 的值是;
(2)如果一级楼梯的高度HE=(8 +2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.
(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料1:反射定律
当入射光线AO照射到平面镜上时,将遵循平面镜反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,显然,这两个角的余角也相等,其中法线(OM)与平面镜垂直,并且满足入射光线、反射光线(OB)与法线在同一个平面.
材料2:平行逃逸角
对于某定角∠AOB=α(0°<α<90°),点P为边OB上一点,从点P发出一光线PQ(射线),其角度为∠BPQ=β(0°<β<90°),当光线PQ接触到边OA和OB时会遵循反射定律发生反射,当光线PQ经过n次反射后与边OA或OB平行时,称角为定角α的n阶平行逃逸角,特别地,当光线PQ直接与OA平行时,称角β为定角α的零阶平行逃逸角.
(1)已知∠AOB=α=20°,
①如图1,若PQ∥OA,则∠BPQ= °,即该角为α的零阶平行逃逸角;
②如图2,经过一次反射后的光线P1Q∥OB,此时的∠BPP1为α的平行逃逸角,求∠BPP1的大小;
③若经过两次反射后的光线与OA平行,请补全图形,并直接写出α的二阶平行逃逸角为 °;
(2)根据(1)的结论,归纳猜想对于任意角α(0°<α<90°),其n(n为自然数)阶平行逃逸角β= (用含n和a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年12月至1月期间由于空气污染严重,天空中被浓浓的雾霾笼罩着,大多数中小学校为了学生的健康,都不得不停课.针对这一情况有关部门对停课在家的学生家长进行了抽样调查.现将学生家长对这一事件态度的调查结果分为四个等级:“A﹣﹣非常不同意”、“B﹣﹣比校同意”、“C﹣﹣不太同意”、“D﹣﹣非常同意”,并将统计结果绘制成如下两幅不完整的统计图. 请根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽样调查学生家长的人数为人;
(3)若所调查学生家长的人数为1600人,非常不同意停课的人数为多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com