精英家教网 > 初中数学 > 题目详情
(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4
分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.
解答:解:根据题意得:△=42-4a>0,即16-4a>0,
解得:a<4,
则a的范围是a<4.
故答案为:a<4.
点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=
2
,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.
(1)求证:ON是⊙A的切线;
(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.

(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为
60x2
60x2
,其中自变量x的取值范围是
0≤x≤
3
2
0≤x≤
3
2

(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳模拟)如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
交x轴于A、B两点,交y轴于C点,顶点为D.
(1)求点A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得四边形AEBC,求点E的坐标,并判四边形AEBC的形状,并说明理由;
(3)在直线BC上是否存在一点P,使得△PAD周长最小?若存在,请求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案