分析 连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形.
解答 证明:连接AD
∵△ABC是等腰直角三角形,D是BC的中点
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
在△BPD和△AQD中,
$\left\{\begin{array}{l}{BD=AD}\\{∠DBP=∠DAQ}\\{BP=AQ}\end{array}\right.$,
∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ为等腰直角三角形.
点评 本题主要考查了等腰直角三角形的判定与性质以及全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2100x2=3500 | B. | 2100(1+x)2=3500 | ||
C. | 2100(1+x%)2=3500 | D. | 2100(1+x)+2100(1+x)2=3500 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{-x}{x-y}=\frac{x}{x+y}$ | B. | $\frac{y}{x}=\frac{{y}^{2}}{{x}^{2}}$ | C. | $\frac{x}{y}=\frac{ax}{ay}$ | D. | $\frac{m}{n}=\frac{m({x}^{2}+1)}{n({x}^{2}+1)}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com