精英家教网 > 初中数学 > 题目详情
11.解不等式(组)
(1)$\frac{2x-1}{3}-\frac{5x+1}{2}≤1$
(2)$\left\{\begin{array}{l}{5x+2>4x}\\{3(5-3x)≥10-4x}\end{array}\right.$.

分析 (1)先去分母,然后移项,合并同类项,系数化为1求解即可.
(2)先求出两个不等式的解集,再求其公共解.

解答 解:(1)去分母得:4x-2-15x-3≤6,
移项合并同类项得:-11x≤11,
系数化为1得:x≥1.
(2)$\left\{\begin{array}{l}{5x+2>4x①}\\{3(5-3x)≥10-4x②}\end{array}\right.$,
由①得 x>-2,
由②得,x≤1,
所以,原不等式组的解集为-2<x≤1.

点评 本题主要考查了一元一次不等式(组)解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.已知函数y=(n+3)x|n|-2是关于x的一次函数,则n=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在50≤x≤120时,具有一次函数的关系,如表所示.
x5080100120
y40343026
(1)求y关于x的函数解析式;
(2)如果修建70天,那么平均每天的修建费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,平行四边形ABCD,点E在边BC上,点F在AD边的延长线上,且EF∥BD,EF,CD交于点G,$\frac{DF}{AD}$=$\frac{2}{5}$,S四边形BDGE=a,则S平行四边形ABCD的值为(  )
A.$\frac{25a}{8}$B.$\frac{25a}{9}$C.$\frac{25a}{16}$D.$\frac{16a}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,△ABC中,∠BAC=90°,AB=AC,点D为AC边上的一个动点,点E在BC边的延长线上,∠CAE=∠CBD.
(1)如图1,若点D为AC边的中点,求证:BC=2CE;
(2)如图2,若$\frac{AD}{AC}$=$\frac{1}{3}$,试猜想线段BC与CE的数量关系,并说明理由;
(3)若$\frac{AD}{AC}$=$\frac{1}{n}$,则$\frac{BC}{CE}$的值为$\frac{2}{n-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,矩形ABCD的面积为12cm2,它的两条对角线交于点O1,以AB、AO1邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2;同样以AB、AO2为邻边作平行四边形ABC2O2…;依此类推,则平行四边形ABC6O6的面积为$\frac{3}{16}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某校组织1000名学生参加“青少年普法知识大赛”,为了了解学生的参赛成绩,从中抽取部分学生的参赛成绩(成绩均为整数)进行统计,并绘制成如下的不完全统计图表.
组别分数段频数频率
50.5-60.5160.08
60.5-70.5300.15
70.5-80.5500.25
80.5-90.5m0.40
90.5-100.524n
请根据所给信息,解答下列问题:
(1)表中m=80,n=0.12;
(2)补全频数分布直方图;
(3)若成绩超过80分为优秀,分别求出被抽取的学生中优秀的学生频数和频率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如图②,在四边形ABDC中,AD平分∠BAC,∠B=45°,∠C=135°,试说明:DB与DC的数量关系,并说明原因.
应用:如图③,在四边形ABDC中,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的上述关系还成立吗?并说明原因.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.在$\sqrt{\frac{49}{100}}$,$\frac{1}{π}$,$\sqrt{7}$,$\frac{101}{11}$,0.10111213…中,无理数的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案