分析 (1)设AB=x米,则BC=32-4x米,由矩形的面积公式可得;
(2)根据题意列出方程,解方程求得x的值,结合墙的最大可用长度为10m即32-4x≤10,可得x的范围,从而得出答案;
(3)将函数解析式配方成顶点式,结合x的范围求得最值即可得.
解答 解:(1)设AB=x米,则BC=32-4x米,
∴S=x(32-4x)=-4x2+32x;
(2)根据题意得:-4x2+32x=48,即x2-8x+12=0,
解得:x=2或x=6,
∵32-4x≤10,即x≥5.5,
∴x=6,即AB=6米;
(3)能,
∵S=-4x2+32x=-4(x-4)2+64,
∴当x>4时,S随x的增大而减小;
∵x≥5.5,
∴x=5.5时,S取得最大值,最大值为55m2.
点评 本题主要考查二次函数的应用和一元二次方程的应用,根据矩形的面积公式求得函数解析式是根本,熟练掌握二次函数的性质求得最值是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
时间t(天) | 1 | 3 | 8 | 10 | 26 | … |
日销售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com