精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BEAD于点F,已知∠BDC=62°,则∠EDF的度数为(

A.34°B.56°C.62°D.28°

【答案】A

【解析】

先利用互余计算出∠FDB28°,再根据平行线的性质得∠CBD=∠FDB28°,接着根据折叠的性质得∠FBD=∠CBD28°,然后利用三角形外角性质计算∠DFE的度数,于是得到结论.

解:∵四边形ABCD为矩形,

ADBC,∠ADC90°,

∵∠BDC62°,

∴∠FDB90°﹣∠BDC90°﹣62°=28°,

ADBC

∴∠CBD=∠FDB28°,

∵矩形ABCD沿对角线BD折叠,

∴∠FBD=∠CBD28°,

∴∠DFE=∠FBD+FDB28°+28°=56°.

∴∠EDF90°﹣∠EFD90°﹣56°=34°,

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc(a0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:

x

1

0

2

4

y

5

1

1

m

求:(1)这个二次函数的解析式;

(2)这个二次函数图象的顶点坐标及上表中m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形内有一点满足.连接.

1)求证:

2)求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个质点在第一象限及轴、轴上运动, 在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第秒时质点所在位置的坐标是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中,点O是对角线DB的中点,点PDB所在直线上的一个动点,PEBCEPFDCF

1)当点P与点O重合时(如图①),猜测APEF的数量及位置关系,并证明你的结论;

2)当点P在线段DB上(不与点DOB重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;

3)当点PDB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 ①如图(1),直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段

②如图(2),直线l上有3个点,则图中有 条可用图中字母表示的射线,有   条线段;

③如图(3),直线l上有n个点,则图中有 条可用图中字母表示的射线,有 条线段;

④应用(3)中发现的规律解决问题:某校七年级共有8个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需 场比赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.

求:

(1)P到OC的距离.

(2)山坡的坡度tanα.

(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店以每箱60元新进一批苹果共400箱,为计算总重量,从中任选30箱苹果称重,发现每箱苹果重量都在10千克左右,现以10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,将称重记录如下:

1)求30箱苹果的总重量

2)若每千克苹果的售价为10元,则卖完这批苹果共获利多少元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:若ABC为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是(AB)的好点

例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(AB)的好点;

又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D不是AB)的好点,但点D是(BA)的好点.

知识运用:如图2MN为数轴上两点,点M所表示的数为-2,点N所表示的数为4.

1)数_______________________ 所表示的点是(MN)的好点;

2)数________________________ 所表示的点是(NM)的好点;

(温馨提示:注意考虑MN的左侧、右侧,不要漏掉答案)

3)如图(3A,B为数轴上的两点,点A所表示的数为-20,点B表示的数为 40,现有一只电子蚂蚁P从点B出发,以2单位每秒的速度一直向左运动,

①当t为何值时,P是(AB)的好点?

②当t为何值时,P是(BA)的好点?

查看答案和解析>>

同步练习册答案