精英家教网 > 初中数学 > 题目详情
如图所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙,其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m的栅栏、设每间羊圈的长为xm.
(1)请你用含x的关系式来表示围成三间羊圈所利用的旧墙的总长度L=______,三间羊圈的总面积S=______;
设宽为x,(2)S可以看成x的______,这里自变量x的取值范围是______;
(3)请计算,当羊圈的长分别为2m、3m、4m和5m时,羊圈的总面积分别为______m2、______m2______m2、______m2,在这些数中,x取______m时,面积S最大.
(1)围成三间羊圈所利用的旧墙的总长度L=-4x+24,三间羊圈的总面积S=-4x2+24x,

(2)S可以看成x的二次函数,这里自变量x的取值范围是0<x<6;

(3)由S=-4x2+24x知,当x=2,y=32,
当x=3,y=36,
当x=4,y=32,
当x=5,y=20,
故当x=3时,面积最大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-
1
2
),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.
(1)求a,c的值;
(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;
(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
(3)若点P为第一象限抛物线上一动点,连接BP、PE,求四边形ABPE面积的最大值,并求此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(x,0),且x≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最______值,值是______;
(2)若x=-4,求抛物线的解析式;
(3)请观察图象:当x______,y随x的增大而增大;当x______时,y>0;当x______时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC,可得下列结论:①∠PCB=30°;②点P的坐标是(
3
2
3
2
);③若P、C两点在抛物线y=-
4
3
x2+bx+c
上,则b的值是-
3
,c的值是1;④在③中的抛物线CP段(不包括C、P两点)上,存在一点Q,使四边形QCAP的面积最大,最大值为
9
3
16
.其中正确的有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=
2

(1)求a的值.
(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.
(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:点P(a+1,a-1)关于x轴的对称点在反比例函数y=-
8
x
(x>0)的图象上,y关于x的函数y=k2x2-(2k+1)x+1的图象与坐标轴只有两个不同的交点A﹑B,求P点坐标和△PAB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm.
(1)底面的长AB=______cm,宽BC=______cm(用含x的代数式表示)
(2)当做成盒子的底面积为300cm2时,求该盒子的容积.
(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.

查看答案和解析>>

同步练习册答案