精英家教网 > 初中数学 > 题目详情

【题目】问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?

问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.

探究一:

如图①,当n=5时,可将正方形分割为五个1×5的矩形.

如图②,当n=6时,可将正方形分割为六个2×3的矩形.

如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形

如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形

如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:

当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.

探究三:

当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.

所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.

问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.

实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)

【答案】探究三:答案见解析;问题解决:答案见解析;实际应用:答案见解析

【解析】

试题分析:先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.

试题解析:探究三:边长为18,19的正方形分割示意图,如图所示

问题解决:若5≤n<10时,如探究一.

若n≥10,设n=5a+b,其中a、b为正整数,5≤b<10,则图形如图所示,均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a×5a的正方形和5a×b的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.

问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.
(1)求∠CAE的度数;
(2)求证:△ADE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (2016镇江)如图1,一次函数y=kx﹣3(k0)的图象与y轴交于点A,与反比例函数(x0)的图象交于点B(4,b).

(1)b= ;k=

(2)点C是线段AB上的动点(于点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求OCD面积的最大值;

(3)将(2)中面积取得最大值的OCD沿射线AB方向平移一定的距离,得到O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程x24x的根是(  )

A.x0B.x4C.x±2D.x0x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是(
A.75°或15°
B.75°
C.15°
D.75°或30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(
A.45°
B.54°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,是确定事件的是(  )

A.篮球运动员身高都在1.80米以上

B.弟弟的体重一定比哥哥的轻

C.抛掷图钉针尖触地

D.吸烟有害身体健康

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列结论错误的是(
A.△ABE≌△ACD
B.△ABD≌△ACE
C.∠C=30°
D.∠DAE=40°

查看答案和解析>>

同步练习册答案