精英家教网 > 初中数学 > 题目详情
11、已知:如图所示,在△ABC中,AB=AC,D为AC上一点,且BD=BC,E为AB上一点,且AD=DE=EB,那么∠A的度数是
45
度.
分析:本题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分理论用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.
解答:解:∵AD=DE,
∴∠A=∠AED,
∵DE=EB,
∴∠EBD=∠EDB,
∵∠AED=∠EBD+∠EDB=2∠EBD,
∴∠A=2∠EBD,
∵BD=BC,
∴∠C=∠BDC,
∵∠BDC=∠A+∠EBD=3∠EBD,
∴∠C=3∠EBD,
∵AB=AC,
∴∠C=∠ABC,
∵∠A+∠C+∠ABC=180°,
∴∠A+2∠C=180°,
2∠EBD+2×3∠EBD=8∠EBD=4∠A=180°.
∴∠A=45°.
点评:本题考查了等腰三角形的性质及三角形的内角和定理、三角形外角的性质;解题中反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下述说明过程,讨论完成下列问题:
已知:如图所示,在?ABCD中,∠A的平分线与BC相交于点E,∠B的平分线与AD相交于点F,AE与BF相交于点O,试说明四边形ABEF是菱形.
证明:(1)∵四边形ABCD是平行四边形,
(2)∴AD∥BC.
(3)∴∠ABE+∠BAF=180°.
(4)∵AE、BF分别平分∠BAF、∠ABE,
(5)∴∠1=∠2=
1
2
∠BAF,∠3=∠4=
1
2
∠ABE.
(6)∴∠1+∠3=
1
2
(∠BAF+∠ABE)=
1
2
×180°=90°.
(7)∴∠AOB=90°.
(8)∴AE⊥BF.
(9)∴四边形ABEF是菱形.

问:①上述说明过程是否正确?
答:
 

②如果错误,指出在第
 
步到第
 
步推理错误,应在第
 
步后添加如下证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在矩形ABCD中,E为DC上的一点,BF⊥AE于点F,且BF=BC,求证:AE=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm.两个动点P、Q分别从B、C两点精英家教网同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.
(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ的长度等于5厘米?
(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.
(3)经过几秒时以C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,在平面直角坐标系中,函数y=
mx
(x>0,m是常数)的图象经过点A(1,4)、点B(a,b),其中a>1,直线AB交y轴于点E.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于精英家教网点M,连接DC.
(1)求m的值;
(2)求证:四边形ACDE为平行四边形;
(3)若AB=CD,求直线AB的函数解析式.

查看答案和解析>>

同步练习册答案