【题目】如图1至图3是将正方体截去一部分后得到的几何体.
(1)根据要求填写表格:
面数/f | 顶点数/v | 棱数/e | |
图1 | _____ | _____ | ____ |
图2 | _____ | _____ | _____ |
图3 | ___ | _____ | ____ |
(2)猜想f,v,e三个数量间的关系.
(3)根据猜想计算,若一个几何体的顶点有2 019个,棱有4 035条,试求出它的面数.
科目:初中数学 来源: 题型:
【题目】某商场计划购进冰箱、彩电进行销售.相关信息如下表:
进价(元/台) | 售价(元/台) | |
冰箱 | 2500 | |
彩电 | 2000 |
(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.
(2)为了满足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的.
①该商场有哪几种进货方式?
②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形纸片ABCD中,AB=6,BC=8.
(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF的长;
(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,顶点为D,对称轴与轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交轴交于点G.
(1)如图①,求直线CE的解析式和顶点D的坐标;
(2)如图①,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于轴的直线l上一点,点N是抛物线对称轴上一点,求的最小值;
(3)如图②,过点D作交轴于点I,将△GDI沿射线GB方向平移至处,将绕点逆时针旋转,当旋转到一定度数时,点会与点I重合,记旋转过程中的为,若在整个旋转过程中,直线G’’I’’分别交x轴和直线GD’于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小甲虫从某点O出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬过的各段路程依次为:(单位:厘米)
+4,6,8,+12,10,+11,3
(1)小甲虫最后是否回到了出发点O呢?
(2)小甲虫离开点O的最远距离是多少厘米?
(3)在爬行过程中,如果每爬1厘米奖励三粒芝麻,那么小甲虫一共得到多少粒芝麻?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(+17)+(-12);
(2)10+(―)―6―(―0.25);
(3)()×48 ;
(4)|-5-4|-5×(-2)2-1÷(-)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2014河南21题)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下降元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形,对角线交于点,点分别是的中点,连接交于,连接
(1)证明:四边形是平行四边形
(2)点是哪些线段的中点,写出结论,并选择一组给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com