精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料:

问题:如图1,在平行四边形ABCD,EAD上一点,AE=AB∠EAB=60°,过点E作直线EF,在EF上取一点G.使得∠EGB=∠EAB,连接AG.

求证:EG=AG+BG.

小明同学的思路是:作∠CAM=∠EABCE于点H,构造全等三角形,经过推理解决问题.

参考小明同学的思路,探究并解决下列问题:

(1)完成上面问题中的证明;

(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段ECAGBG之间的数量关系,并证明你的结论.

:线段EGAGBG之间的数量关系为___________________________________________________.证明:

【答案】(1)详见解析;(2)EG+BG=AG,证明详见解析.

【解析】

1)作∠GAH=EABGE于点H,证△ABGOAEH,再证ΔACH是等边三角形,得AG=HG EG=AG+BG;(2)作∠GAH=EABGE的延长线于点H,则∠GAB=HAE,证ΔABGΔAEH,得BG=EH,AG=AH,再证ΔAGH是等腰直角三角形,可得AG=HG.EG+BG=AG.

(1)证明:如图1,作∠GAH=EABGE于点H,

则∠GAB=HAE.

∵∠EAB=EGB,AOE=BOF,

∴∠ABG=AEH

ΔABGΔAEH

所以△ABGOAEH

BG=EH,AG=AH

∵∠GAH=EAB=60°

ΔACH是等边三角形

AG=HG.

EG=AG+BG

(2)EG+BG=AG

证明:

如图2,作∠GAH=EABGE的延长线于点H,则∠GAB=HAE

∵∠EGB=EAB=90°

∴∠ABG+AEG=AEG+AEH=180°

∴∠ABG=AEH.

ΔABGΔAEH

ΔABGΔAEH

BG=EH,AG=AH

∵∠GAH=EAB=90°

ΔAGH是等腰直角三角形

AG=HG

EG+BG=AG

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某研究所将某种材料加热到1000时停止加热,并立即将材料分为AB两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,AB两组材料的温度分别为yAyByAyBx的函数关系式分别为yA=kx+byB=x602+m(部分图象如图所示),当x=40时,两组材料的温度相同.

1)分别求yAyB关于x的函数关系式;

2)当A组材料的温度降至120℃时,B组材料的温度是多少?

3)在0x40的什么时刻,两组材料温差最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1⊙O的半径为rr0),若点P′在射线OP上,满足OP′OP=r2,则称点P′是点P关于⊙O反演点

如图2⊙O的半径为4,点B⊙O上,∠BOA=60°OA=8,若点A′B′分别是点AB关于⊙O的反演点,求A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.

(1)求出20182020年五一长假期间游客人次的年平均增长率;

(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市公交公司为应对春运期间的人流高峰,计划购买AB两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,

(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?

(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下述材料:

我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做分子有理化”:

与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:

分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:

比较的大小.可以先将它们分子有理化如下:

因为,所以

再例如:求的最大值.做法如下:

解:由可知,而

时,分母有最小值2,所以的最大值是2

解决下述问题:

1)比较的大小;

2)求的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的南偏东60方向,距离灯塔100海里的A处,它计划去往位于灯塔P的北偏东45方向上的B.(参考数据≈1.414 ≈1.732 ≈2.449

1)问B处距离灯塔P有多远?(结果精确到0.1海里)

2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:

1)请将下表补充完整:

2)请从下列三个不同的角度对这次测试结果进行分析:

①从平均数和方差相结合看,  的成绩好些;

②从平均数和中位数相结合看,  的成绩好些;

③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.

查看答案和解析>>

同步练习册答案