精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.

【答案】分析:先连接OB、OC,并过O作OD⊥BC于D,由于OD⊥BC,BC=12,根据垂径定理可知BD=CD=6,由∠A=60°,利用圆周角定理可求∠BOC=120°,而OB=OC,OD⊥BC,利用等腰三角形三线合一定理可知∠BOD=∠COD=60°,在Rt△COD中,设OD=x,那么OC=2x,利用勾股定理可得x2+62=(2x)2,易求x,进而可求OC,从而可求直径.
解答:解:如右图所示,
连接OB、OC,并过O作OD⊥BC于D,
∵OD⊥BC,BC=12,
∴BD=CD=6,
∵∠A=60°,
∴∠BOC=120°,
∵OB=OC,OD⊥BC,
∴∠BOD=∠COD=60°,
∴∠OCD=30°,
在Rt△COD中,设OD=x,那么OC=2x,于是
x2+62=(2x)2
解得x=2,(负数舍去),
即OC=4(cm),
∴⊙O的直径=2OC=8(cm).
点评:本题考查了圆周角定理、垂径定理、含有30°角的直角三角形的性质,解题的关键是作辅助线,构造直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案