【题目】已知:在中,以边为直径的交于点,在劣弧上取一点使,延长依次交于点,交于.
(1)求证:;
(2)若,的直径等于10,,求的长.
【答案】(1)证明见解析,(2)
【解析】
(1)连接AD,由圆周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根据直角三角形的性质即可得出结论;
(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的长,进而求出BC的长,由已知的一对角相等和公共角,根据两对对应角相等的两三角形相似可得三角形BCE与三角形EDC相似,由相似得比例即可求出CE的长.
证明:(1)连接AD,
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠DCA+∠DAC=90°,
∴∠EBC+∠DCA=90°,
∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,
∴AC⊥BH;
(2)∵∠BDA=180°-∠ADC=90°,∠ABC=45°,
∴∠BAD=45°,
∴BD=AD,
∵BD=8,
∴AD=8,
在直角三角形ADC中,AD=8,AC=10,
根据勾股定理得:DC=6,
则BC=BD+DC=14,
∵∠EBC=∠DEC,∠BCE=∠ECD,
∴△BCE∽△ECD,
∴ ,
即
∴CE
科目:初中数学 来源: 题型:
【题目】等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.
(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?
(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?
(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如我们把函数沿轴翻折得到函数,函数与函数的图象合起来组成函数的图象.若直线与函数的图象刚好有两个交点,则满足条件的的值可以为_______________(填出一个合理的值即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,CA=CB,0°<∠C≤90°.过点A作射线AP∥BC,点M、N分别在边BC、AC上(点M、N不与所在线段端点重合),且BM=AN,连结BN并延长交AP于点D,连结MA并延长交AD的垂直平分线于点E,连结ED.
(猜想)如图①,当∠C=45°时,可证△BCN≌△ACM,从而得出∠CBN=∠CAM,进而得出∠BDE的大小为 度.
(探究)如图②,若∠C=α.
(1)求证:△BCN≌△ACM.
(2)∠BDE的大小为 度(用含a的代数式表示).
(应用)如图③,当∠C=90°时,连结BE.若BC=3,∠BAM=15°,则△BDE的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴相交于、两点,抛物线过点、,且与轴另一个交点为,以、为边作矩形,交抛物线于点.
(1)求抛物线的解析式以及点的坐标;
(2)已知直线交于点,交于点,交于点,交抛物线(上方部分)于点,请用含的代数式表示的长;
(3)在(2)的条件下,连接,若和相似,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点D,E分别是边AB,AC上的点,DE∥BC,点H是边BC上的点,连接AH交线段DE于点G,且BH=DE=12,DG=8,S△ADG=12,则S四边形BCED=( )
A.24B.22.5C.20D.25
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线;
(2)若CD=2,AC=4,BD=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com