精英家教网 > 初中数学 > 题目详情

【题目】如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点F在线段DE上,且EF=2DF,过点C的直线CG交OA的延长线于点G,且∠CGO=∠CDE.
(1)求证:CG与弧AB所在圆相切.
(2)当点C在弧AB上运动时,△CFD的三条边是否存在长度不变的线段?若存在,求出该线段的长度;若不存在,说明理由.
(3)若∠CGD=60°,求图中阴影部分的面积.

【答案】
(1)证明:如图:

∵点C作CD⊥OA于点D,作CE⊥OB于点E,

∴∠CDO=∠CEO=90°,

∵∠DOE=90°,

∴ODCE是矩形,

∴∠CDE+∠EDO=90°,∠EDO=∠COD.

∵∠CGO=∠CDE,

∴∠CGO+COD=90°,

∴∠OCG=90°,

∵CG经过半径OC的外端,

∴CG是⊙O的切线,即CG与弧AB所在圆相切


(2)解:DF不变.

在矩形ODCE中,∵DE=OC=3,EF=2DF,∴DF= DE= OC=1,

DF的长不变,DF=1


(3)解:∵∠CGD=60°,

∴∠COD=30°,

∴CD=OCsin∠COD= OC= ,OD=OCcos∠COD= OC=

图中阴影部分的面积 ×π×32 CDOD=


【解析】(1)根据矩形的判断,可得OCDE的形状,根据矩形的性质,可得∠CDE+∠EDO=90°,∠EDO=∠COD,根据余角的性质,可得∠CGO+COD=90°,根据切线的判定,可得答案;(2)根据矩形的性质,可得CD的长,根据EF与DF的关系,可得DF的长;(3)根据锐角三角函数,可得CD、OD的长,根据根据图形割补法,可得阴影的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,,点在第二象限的角平分线上,的垂直平分线交于点.

(1)求证:

(2)轴于点,若,求点的坐标

(3)轴于点,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +(﹣3)2﹣20170×|﹣4|+( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形纸片ABC中,,折叠纸片,使点C和点A重合,折痕与ACBC交于点D和点E,则折痕DE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为2的正方形ABCD中,P为AB上一动点,E为AD中点,PE交CD延长线于Q,过E作EF⊥PQ交BC延长线于F,则下列结论:①△APE△DQE;②PQ=EF;③当P为AB中点时,CF= ;④若H为QC中点,当P从A移动到B时,线段EH扫过的面积为 .其中正确的是( )

A.①②
B.①②④
C.②③④
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为___;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.

运用上述知识,解决下列问题:

(1)如果a-2+b+3=0,其中a、b为有理数,那么a= ,b=

(2)如果2+a-1-b=5,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC为等边三角形,点D由点C出发,在BC的延长线上运动,连结AD,以AD为边作等边三角形ADE,连结CE

(1)请写出ACCDCE之间的数量关系,并证明;

(2)若AB=6cm,点D的运动速度为每秒2cm,运动时间为t秒,则t为何值时,CEAD

查看答案和解析>>

同步练习册答案