精英家教网 > 初中数学 > 题目详情
(2012•衡水一模)如图,已知二次函数y=-
12
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)将点A及点B的坐标代入即可得出b、c的值,继而可得出二次函数解析式;
(2)根据(1)求得的解析式,可得出对称轴,也可得出AC的长度,根据S△ABC=
1
2
AC×BO可得出答案.
(3)AD长度固定,故只需找到点P使AP+PD最小即可,找到点A关于y轴的对称点A',连接A'D,则A'D与y轴的交点即是点P的位置,求出直线A'D的函数解析式,可得出点P的坐标.
解答:解:(1)将点A(2,0)、B(0,-6)代入得:
-2+2b+c=0
c=-6

解得:
b=4
c=-6

故这个二次函数的解析式为:y=-
1
2
x2+4x-6.
(2)∵二次函数的解析式为:y=-
1
2
x2+4x-6,
∴二次函数的对称轴为x=4,即OC=4,
∴AC=2,
故S△ABC=
1
2
AC×BO=6.
(3)存在,点P的坐标为(0,
2
3
).

AD长度固定,只需找到点P使AP+PD最小即可,找到点A关于y轴的对称点A',连接A'D,则A'D与y轴的交点即是点P的位置,
∵点A'与点A关于y轴对称,
∴点A'的坐标为(-2,0),
又∵顶点D的坐标为(4,2),
∴直线A'D的解析式为:y=
1
3
x+
2
3

令x=0,则y=
2
3
,即点P的坐标为(0,
2
3
).
点评:此题考查了二次函数综合题,涉及了待定系数法求函数解析式、三角形的面积,要注意掌握点的坐标与线段长度之间的转换,难点在第三问,注意运用轴对称的性质求最短路线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•衡水一模)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.我国从2011年1月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:

根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把扇形统计图和条形统计图补充完整;
(3)如果该社区有1000人,请估计该地区大约有多少人支持“警示戒烟”这种方式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,圆O是△ABC的外接圆,连接OB、OC,圆O的半径R=10,sinA=
35
,则弦BC的长为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)若a、b互为相反数,c、d互为倒数,则(cd)2012-(a+b)2011=
1
1

查看答案和解析>>

同步练习册答案