【题目】今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外如图,某天我国一艘海监船巡航到港口正西方的处时,发现在的北偏东方向,相距海里处的点有一可疑船只正沿方向行驶,点在港口的北偏东方向上,海监船向港口发出指令,执法船立即从港口沿方向驶出,在处成功拦截可疑船只,此时点与点的距离为海里.
(1)求的度数与点到直线的距离;
(2)执法船从到航行了多少海里?(结果保留根号)
【答案】(1)30°,75海里;(2)(75-25)海里.
【解析】
(1)根据题意得∠C=180°-30°-120°=30°,过点B作BM⊥CA交CA的延长线于点M,从而求出BM的值,即可得到答案;
(2)过点D作DN⊥BA交BA的延长线于点N,设AD=x,则AN=x,DN=x,根据勾股定理,列出方程,即可求解.
(1)由题意得:∠MBC=60°,∠ABC=30°,∠BAC=90°+30°=120°,
∴∠C=180°-30°-120°=30°,
过点B作BM⊥CA交CA的延长线于点M,
∵BC=150(海里),
∴BM=BC=×150=75(海里),
即:点到直线的距离为75海里;
(2)过点D作DN⊥BA交BA的延长线于点N,
∵∠ABC=∠C=30°,
∴AB=BC÷=150÷=50(海里),
设AD=x,
∵∠DAN=180°-120°=60°,
∴AN=x,DN=x,
∵在RtDBN中,,
∴,解得:x1=75-25,x2=-75-25(舍去),
答:执法船从到航行了(75-25)海里.
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图矩形,AB=2BC=4,E是AB二等分点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,沿直线EF折叠矩形ABCD,使点A落在直线l上,则DF=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90,CO=CD.若B(2,0),则点C的坐标为( )
A. (2,2) B. (1,2) C. (,2) D. (2,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).
(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?
(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在函数y=(x>0)的图象上,过点A作x轴、y轴的垂线分别交函数y=(x>0,k>2)的图象于点B、C,过点C作x轴的垂线交y=(x>0)的图象于点D,连结BC、OC、OD.若点A、C的横坐标分别为1和2,则△ABC与△OCD的面积之和为( )
A.2B.3C.4D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=10,AC=6.动点P从点A出发,沿折线AC﹣CB运动,在边AC上以每秒3个单位长度的速度运动,在边BC上以每秒4个单位长度的速度运动,到点B停止,当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q;以Q为直角顶点向PQ右侧作Rt△PQD,且QD=PQ.设△PQD与△ABC重叠部分图形的面积为S,点P运动的时间为t(s).
(1)当点P在边AC上时,求PQ的长(含t的代数式表示);
(2)点D落在边BC上时,求t的值;
(3)求S与t之间的函数关系式;
(4)设PD的中点为E,作直线CE.当直线CE将△PQD的面积分成1:5两部分时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形中,动点,分别以相同的速度从,两点同时出发向和运动(任何一个点到达停止),在运动过程中,则线段的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AB上一点,以点O为圆心,以OB为半径作⊙O,⊙O恰好与AC相切于点D,连接BD,BD平分∠ABC.
(1)求∠C的度数;
(2)如果∠A=30°,AD=2,求线段CD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com