精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD边长是16 cm,P是AB上任意一点(与A、B不重合),QP⊥DP.设AP="x" cm,BQ="y" cm.试求出y与x之间的函数关系式.
y=-x2+x
∵ABCD是正方形,
∴∠A=∠B=90°,
∠ADP+∠APD=90°.
又∵QP⊥DP,∴∠APD+∠QPB=90°.
∴∠ADP=∠QPB.
∴有△ADP∽△BPQ.
=.
=.∴y=-x2+x.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标中,对称轴平行于y轴的抛物线经过原点O,其顶点坐标为(3,);Rt△ABC的直角边BC在x轴上,直角顶点C的坐标为(,0),且BC=5,AC=3(如图1).

图1                             图2
(1)求出该抛物线的解析式;
(2)将Rt△ABC沿x轴向右平移,当点A落在(1)中所求抛物线上时Rt△ABC停止移动.D(0,4)为y轴上一点,设点B的横坐标为m,△DAB的面积为s.
①分别求出点B位于原点左侧、右侧(含原点O)时,s与m之间的函数关系式,并写出相应自变量m的取值范围(可在图1、图2中画出探求);
②当点B位于原点左侧时,是否存在实数m,使得△DAB为直角三角形?若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线关于x轴对称的抛物线的解析式是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=-x2-7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是(  )
A.y1>y2>y3B.y1<y2<y3
C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是(  ).
A.ac>0
B.方程ax2+bx+c=0的两根是x1=-1,x2=3
C.2a-b=0
D.当y>0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线y=ax+c与抛物线y=ax2+c的图象画在同一个直角坐标系中,可能是下面的

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB,BC,AC的中点,连接DE,DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)

(1)当点P运动到点F时,CQ=          cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.

查看答案和解析>>

同步练习册答案