【题目】如图,在平面直角坐标系xOy中,已知抛物线y= 与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,﹣3),经过点A的射线AM与y轴相交于点E,与抛物线的另一个交点为F,且.
(1)求这条抛物线的表达式,并写出它的对称轴;
(2)求∠FAB的余切值;
(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,求点P的坐标.
【答案】抛物线的解析式为y=.抛物线的对称轴为x=1;(2);(3)(0,6)或P(0,﹣).
【解析】试题分析:(1)根据代入法求出函数的解析式,然后根据对称轴的关系式求出对称轴;
(2)过点F作FM⊥x轴,垂足为M,设E(0,t),则OE=t,然后根据题意得到用t表示的F点的坐标,代入解析式可求得t的值,然后根据∠FAB的余切值;
(3)由C点的坐标求出D点的坐标,然后根据∠DAB的余切值求出∠DAB=∠BAF,然后分情况讨论:①当点P在AF的上方和②当点P在AF的下方,求出P点的坐标.
试题解析:(1)把C(0,﹣3)代入得:c=﹣3,
∴抛物线的解析式为y=+bx﹣3.
将A(﹣2,0)代入得:×(﹣2)2﹣2b﹣3=0,解得b=﹣,
∴抛物线的解析式为y=x2﹣x﹣3.
∴抛物线的对称轴为x=﹣=1.
(2)过点F作FM⊥x轴,垂足为M.
设E(0,t),则OE=t.
∵,
∴==.
∴F(6,4t).
将点F(6,4t)代入y=x2﹣x﹣3得:×62﹣×6﹣3=0,解得t=.
∴cot∠FAB==.
(3)∵抛物线的对称轴为x=1,C(0,﹣3),点D是点C关于抛物线对称轴的对称点,
∴D(2,﹣3).
∴cot∠DAB=,
∴∠FAB=∠DAB.
如下图所示:
当点P在AF的上方时,∠PFA=∠DAB=∠FAB,
∴PF∥AB,
∴yp=yF=6.
由(1)可知:F(6,4t),t=.
∴F(6,6).
∴点P的坐标为(0,6).
当点P在AF的下方时,如下图所示:
设FP与x轴交点为G(m,0),则∠PFA=∠FAB,可得到FG=AG,
∴(6﹣m)2+62=(m+2)2,解得:m=,
∴G(,0).
设PF的解析式为y=kx+b,将点F和点G的坐标代入得:,
解得:k=,b=﹣.
∴P(0,﹣).
综上所述,点P的坐标为(0,6)或P(0,﹣).
科目:初中数学 来源: 题型:
【题目】我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)本次调查中共抽取了 名学生.
(2)补全条形统计图.
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是 度.
(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了推动球类运动的普及,成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:
(1)本次抽样调查,共调查了 名学生;
(2)请将条形统计图和扇形统计图补充完整;
(3)若该学校共有学生1800人,根据以上数据分析,试估计选择排球运动的同学约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备购进一批甲、乙两种办公桌若干张,并且每买张办公桌必须买两把椅子,椅子每把元.若学校购买张甲种办公桌和张乙种办公桌共花费元,购买张甲种办公桌比购买张乙种办公桌多花费元。
(1)求甲、乙两种办公桌每张各多少元?
(2)若学校准备用不超过元购买甲、乙两种办公桌共张,且甲种办公桌数量不多于乙种办公桌数量的倍,请求出有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.
(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
视力范围分组 | 组中值 | 频数 |
3.95≤x<4.25 | 4.1 | 20 |
4.25≤x<4.55 | 4.4 | 10 |
4.55≤x<4.85 | 4.7 | 30 |
4.85≤x<5.15 | 5.0 | 60 |
5.15≤x<5.45 | 5.3 | 30 |
合计 | 150 |
(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A,B,C三点在同一条数轴上.
(1)、若点A,B表示的数分别为-4,2,且BC=AB,则点C表示的数是 ;
(2)、点A,B表示的数分别为m,n,且m<n.
①若AC-AB=2,求点C表示的数(用含m,n的式子表示);
②点D是这条数轴上的一个动点,且点D在点A的右侧(不与点B重合),当AD=2AC,BC=BD,求线段AD的长(用含m,n的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com