精英家教网 > 初中数学 > 题目详情
6.计算:
①$2sin60°-\frac{1}{{\sqrt{3}-2}}$
②$(\sqrt{18}-2\sqrt{24})$÷$\sqrt{3}$-4$\sqrt{\frac{1}{8}}$×$\sqrt{3}$.

分析 ①利用特殊角的三角函数值和分母有理化得到原式=2×$\frac{\sqrt{3}}{2}$+2+$\sqrt{3}$,如果合并即可;
②先进行二次根式的除法和乘法运算,然后合并即可.

解答 解:①原式=2×$\frac{\sqrt{3}}{2}$+$\frac{1}{2-\sqrt{3}}$
=$\sqrt{3}$+2+$\sqrt{3}$
=2$\sqrt{3}$+2;
②原式=$\sqrt{18÷3}$-2$\sqrt{24÷3}$-$\sqrt{2}$×$\sqrt{3}$
=$\sqrt{6}$-4$\sqrt{2}$-$\sqrt{6}$
=-4$\sqrt{2}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.我区创卫宣传组在某中学随机抽取一个班就“创卫”知识的了解情况进行问卷调查,然后将该班问卷情况按“优”、“良”、“中”、“及格”、“差”五个等级进行分析,并绘制了两幅不完整的统计图.

(1)该班共有50人,其中问卷得“优”的人数占10%.并补全条形统计图;
(2)为了让更多的人了解和参与到“创卫”活动中去,学校决定从问卷得“优”的所有同学中选派2名参加区政府组织的“创卫知识宣传讲座”,其中问卷得“优”的同学中有小刚和小丽各一人.请用列表或画树状图的方法,求出所选两位同学恰好是小刚和小丽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列命题中,属于真命题的是(  )
A.若a>b,则ac>bcB.$\sqrt{a^2}$=a(a是实数)
C.三角形的三条中线相交于同一点D.内错角相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某校欲购买A、B两种树木共20棵绿化校园,已知A种树木单价为900元/棵,B种树木单价为400元/棵.
(1)若学校计划购买两种树木的所需费用为10000元,求计划购得A、B两种树木各多少棵?
(2)在实际购买时发现商家推出优惠活动:B种树木单价不变,A种树木每多买一棵单价降低50元,即只买一棵时,每棵900元,购买两棵时,每棵850元,…,依此类推,但是每棵最低单价不得低于550元.设购买A种树木x棵(x为正整数).
①求学校实际购买时所需费用W(元)与购买A种树木x棵之间的函数关系式,并写出x相应的取值范围;
②求学校实际购买时所需费用W(元)最小的方案;
?若学校为了节约经费,现决定购买两种树木的所需费用低于9200元,请问购买A种树木最多2棵(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(-1,-1),(0,0),($\sqrt{2}$,$\sqrt{2}$),…都是“梦之点”.
(1)若点P(2,m)是“梦之点”,则点P关于原点的对称点是(-2,-2);
(2)已知关于t的方程at2+(b-1)t+1=0的两根分别为$\sqrt{3}$,$\frac{1}{3}$,若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”,则“梦之点”是($\sqrt{3}$,$\sqrt{3}$)和($\frac{1}{3}$,$\frac{1}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,直角坐标系中,P(3,y)是第一象限内的点,且$tanα=\frac{4}{3}$,求sinα.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在Rt△ABC中,∠ACB=90°.AC=3,cosB=$\frac{4}{5}$
(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)请你判断(1)中AB与⊙O的位置关系,证明你的结论,并求出OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算下列各题
(1)4÷(-2)-5×(-3)+6.              
(2)$-{1^4}-\frac{1}{6}×[5-{(-3)^2}]$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知点A在x轴上,?OABC的顶点B在反比例函数y=$\frac{k}{x}$的图象上,顶点C在反比例函数y=$\frac{2}{x}$的图象上,?OABC的面积等于4.
(1)求k的值;
(2)已知OA=1,若在坐标平面内存在不同于点C的任意点D,使以O、A、B、D为顶点所作的四边形是平行四边形,请直接写出所有符合条件的点D的坐标.

查看答案和解析>>

同步练习册答案