分析 (1)首先根据等角的余角相等可得∠OMN=∠ONM,再由等角对等边可得ON=OM;
(2)连接OA,OC,先根据垂径定理得出AM=$\frac{1}{2}$AB,CN=$\frac{1}{2}$CD,再由OM=ON,OA=OC可知Rt△AOM≌Rt△CON,故AM=CN,由此即可得出结论.
解答 解:(1)MO=NO,
∵OM⊥AB,ON⊥CD,
∴∠AMO=∠CNO=90°,
∵∠AMN=∠CNM,
∴∠OMN=∠ONM,
∴MO=NO;
(2)连接OA,OC,
∵OM⊥AB,ON⊥CD,
∴AM=$\frac{1}{2}$AB,CN=$\frac{1}{2}$CD,∠AMO=∠CNO=90°,
在Rt△AOM与Rt△CON中,$\left\{\begin{array}{l}{MO=NO}\\{AO=CO}\end{array}\right.$,
∴Rt△AOM≌Rt△CON(HL),
∴AM=CN,
∴AB=CD.
点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2.5 | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{10}$-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com