A
分析:根据切线长定理求出AD=AF,BE=BD,CE=CF,得出等边三角形ADF,推出DF=AE=AF,根据BC=6,求出BD+CF=6,求出AD+AF=4,即可求出答案.
解答:∵⊙O与BC,AC,AB三边分别切于E,F,D点,
∴AD=AF,BE=BD,CE=CF,
∵BC=BE+CE=6,
∴BD+CF=6,
∵AD=AF,∠A=60°,
∴△ADF是等边三角形,
∴AD=AF=DF,
∵AB+AC+BC=16,BC=6,
∴AB+AC=10,
∵BD+CF=6,
∴AD+AF=4,
∵AD=AF=DF,
∴DF=AF=AD=
×4=2,
故选A.
点评:本题考查了对切线长定理的应用,关键是求出AD+AF的值,主要考查学生运用定理进行推理和计算的能力,题目比较好,难度也适中.