分析 由△AEF∽△DCE,得$\frac{AE}{DC}$=$\frac{EF}{EC}$=$\frac{1}{2}$,由此即可解决问题.
解答 解:∵四边形ABCD是正方形,
∴AD=DC,∠A=∠D=90°,
∵AE=ED,
∴CD=AD=2AE,
∵∠FEC=90°,
∴∠AEF+∠DEC=90°,
∵∠DEC+∠DCE=90°,
∴∠AEF=∠DCE,∵∠A=∠D,
∴△AEF∽△DCE,
∴$\frac{AE}{DC}$=$\frac{EF}{EC}$=$\frac{1}{2}$,
∴tan∠ECF=$\frac{EF}{EC}$=$\frac{1}{2}$.
故答案为$\frac{1}{2}$.
点评 本题考查正方形的性质、相似三角形的判定和性质、三角函数的定义等知识,解题的关键是灵活应用相似三角形的性质解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com