【题目】点E为正方形ABCD边BC上的一点,点G为BC延长线一点,连接AE,过点E作AE⊥EF,且AE=EF,连接CF.
(1)如图1,求证:∠FCG=45°,
(2)如图2,过点D作DH//EF交AB于点H,连接HE,求证:;
(3)如图3,连接AF、DF,若AF交CD于点M,DM=2,BH=3,求DF的长.
【答案】(1)见解析;(2)见解析;(3)3.
【解析】
(1)过点F作FK⊥CG于点K,证出≌,得到BE=HF,再根据正四边形的性质得到BC=AB=EH,从而计算出EH-EC=BC-EC,即BE=CH,故CH=HF,再根据∠CHF=90°,求出∠FCG=45°;
(2)利用角边角定理证明△DAH≌△ABE,从而得到AH=BE,然后利用勾股定理进行证明;
(3)过点A作AO⊥AM交BC延长线于点O,连接EM,证≌,≌,结合△DAH≌△ABE,证平行四边形HEFD,从而得到DF=HE ,设AH=BE=x,OE=EM=2+x,CM=x+1,然后在Rt△ECM中,利用勾股定理列方程求解.
解:(1)过点F作FK⊥CG于点K,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEK=90°,
又∵∠BAE+∠AEB=90°,
∴∠FEK=∠EAB,
又∵∠B=∠EKF,
且AE=EF,
∴△ABE≌△EKF,
∴BE=KF,BC=AB=EK,
∴EK-EC=BC-EC,
∴BE=CK,
∴CK=KF.
∴∠FCK=∠CFK=
(2) ∵DH∥EF,AE⊥EF
∴AE⊥DH
∴∠EAD+∠ADH=90°
又∵正方形ABCD中,∠BAD=90°,AD=AB,∠DAB=∠B=90°
∴∠BAE+∠EAD=90°
∴∠BAE=∠ADH
∴△DAH≌△ABE
∴AH=BE
∵在Rt△BHE中,
∴
(3)过点A作AO⊥AM交BC延长线于点O,连接EM.
∵OA⊥AM,
∴∠OAM=90°
又因为正方形ABCD中,AB=AD,∠BAD=∠ABC=∠ADC=90°
∴∠OAM=∠BAD
∴∠OAM-∠BAM=∠BAD-∠BAM
∴∠OAB=∠MAD
∴≌
∴AO=AM
∵AE⊥EF,且AE=EF
∴∠EAM=45°
∴∠MAD+∠BAE=45°
∴∠OAB+∠BAE=45°
∴∠OAE=∠EAM
又∵AE=AE
∴≌
∴OE=EM
由(2)可知△DAH≌△ABE
∴DH=AE
∴DH=EF,且DH//EF
∴四边形HEFD为平行四边形,
∴DF=HE
设AH=BE=x,OE=EM=OB+DE=DM+BE2+x,CM=CD-DM=x+1,
∴在Rt△ECM中,,解得x=3
在Rt△BEH中,
∴DF=3.
科目:初中数学 来源: 题型:
【题目】如图1,把矩形放在平面直角坐标系中,边在轴上,边在轴上,连接,且,过点作平分交于点.动点在线段上运动,过作交于,过作交于.
(1)当时,在线段上有一动点,轴上有一动点,连接当周长最小时,求周长的最小值及此时点的坐标;
(2)如图2,在(1)问的条件下,点是直线上的一个动点,问:在轴上是否存在点,使得是以为腰的等腰直角三角形?若存在,请直接写出点及对应的点的坐标,若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每一个小正方形边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画图.
(1)画出一个周长为24,面积为24的直角三角形;
(2)画出一个周长为20,面积为24的菱形;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系之中,点O为坐标原点,直线分别交x、y轴于点B、A,直线与直线交于点C.
(1)如图1,求点C的坐标.
(2)如图2,点P(t,0)为C点的右侧x轴上一点,过点P作x轴垂线分别交AB、OC于点N、M,若MN=5NP,求t的值.
(3)如图3,点F为平面内任意一点,是否存在y轴正半轴上一点E,使点E、F、M、N围成的四边形为菱形,若存在求出点E坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO , 求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.
(1)求该一次函数的解析式;
(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学六七年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.
(1)A、B型车每辆可分别载学生多少人?
(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com