精英家教网 > 初中数学 > 题目详情
1.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),对角线交于点M.规定“把正方形ABCD先沿x轴翻折,再向左平移个单位”为一次变换,那么经过两次变换后,点M的坐标变为(0,2),连续经过2015次变换后,点M的坐标变为(-2013,-2).

分析 首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.

解答 解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).
∴对角线交点M的坐标为(2,2),
根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),
第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),
第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),
∴连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为(-2013,-2).
故答案为:(0,2),(-2013,-2).,

点评 此题考查了点的坐标变化规律,对称与平移的性质.注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.据新闻报道,拟建于五通桥区境内的乐山机场,投资主体工程约1.548亿元,建成后将会结束乐山作为一个旅游文化名城无航空的历史.其中154800000用科学记数法表示为1.548×108

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的结论的个数(  )
①a+b+c>0;②a-b+c<0;③abc<0;④b=2a; ⑤b>0.
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,二次函数y=x2+2x+c的图象与x轴交于点A和点B(1,0),以AB为边在x轴上方作正方形ABCD,动点P从点A出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,同时动点Q从点C出发,以每秒1个单位长度的速度沿CB匀速运动,当点Q到达终点B时,点P停止运动,设运动时间为t秒.连接DP,过点P作DP的垂线与y轴交于点E.
(1)求点A的坐标;
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,并求出这个最大值;
(3)在P,Q运动过程中,求当△DPE与以D,C,Q为顶点的三角形相似时t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,点C′恰好落在抛物线的对称轴上?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知抛物线C0:y=x2,顶点记作A0.首先我们将抛物线C0关于直线y=1对称翻折过去得到抛物线C1称为第一次操作,再将抛物线C1关于直线y=2对称翻折过去得到抛物线C2称为第二次操作,…,将抛物线Cn-1关于直线y=2n-1对称翻折过去得到抛物线Cn(顶点记作An)称为第n此操作(n=1,2,3…),….设抛物线C0与抛物线C1交于两点B0与B1,顺次连接A0、B0、A1、B1四个点得到四边形A0B0A1B1,抛物线C2与抛物线C3交于两点B2与B3,顺次连接A2、B2、A3、B3四个点得到四边形A2B2A3B3,…,抛物线Ck-1与抛物线Ck交于两点Bk-1与Bk,顺次连接Ak-1、Bk-1、Ak、Bk四个点得到四边形Ak-1Bk-1AkBk(k=1,3,5…),….
(1)请分别直接写出抛物线Cn(n=1,2,3,4)的解析式;
(2)一系列四边形Ak-1Bk-1AkBk(k=1,3,5…)为哪种特殊的四边形(说明理由)?它们都相似吗?如果全都相似,请证明之;如果不全都相似,请举出一对不相似的反例;
(3)试归纳出抛物线Cn的解析式,无需证明.并利用你归纳出来的Cn的解析式,求四边形Ak-1Bk-1AkBk(k=1,3,5…)的面积(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为y=-5x+500,自变量x的取值范围是0≤x≤100.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.-10的绝对值是(  )
A.$\frac{1}{10}$B.-$\frac{1}{10}$C.10D.-10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知直线l经过点M(3,0),N(0,-4),求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在△ABC中,AB>BC>AC,小华依下列方法作图,①作∠C的角平分线交AB于点D;②作CD的中垂线,分别交AC,BC于点E,F;③连接DE,DF.根据小华所作的图,下列说法中一定正确的是(  )
A.四边形CEDF为菱形B.DE=DA
C.DF⊥CBD.CD=BD

查看答案和解析>>

同步练习册答案