【题目】如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是( )
A. A5 B. A6 C. A7 D. A8
【答案】B
【解析】
根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可分别求角另一等腰三角形中的底角与∠A的关系,最后根据三角形内角和定理进行验证不难求解.
∵AA1=A1A2,
∴∠AA2A1=∠A,
∵∠A2A1A3=2∠A,∠A=16°,
∴∠A2A1A3=32°,
∵A1A2=A2A3,
∴∠A2A3A=∠A2A1A3=2∠A,
∴∠NA2A3=3∠A=48°,
同理:∠A4A3M=4∠A=64°,∠NA4A5=5∠A=80°,∠NA6A5=6∠A=96°,
∵如果存在A7点,则△A5A6A7为等腰三角形且∠NA6A5是△A5A6A7的一个底角,而∠NA6A5>90°,
∴此假设不成立,即A7点不存在,
∴作出的最后一点为A6,
故选B.
科目:初中数学 来源: 题型:
【题目】已知如图:直线AB⊥BC,四边形ABCD是正方形,且AB=6,点P是BD上一点,且PD=2,一块三角板的直角顶点放在点P上,另两条边与BC、AB所在直线相交于点E、F,在三角板绕点P旋转的过程中,使得△PBF是等腰三角形,(1)线段BD=________,(2)请写出所有满足条件的BF的长__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题,真命题是( )
A.如图,如果OP平分∠AOB,那么,PA=PB
B.三角形的一个外角大于它的一个内角
C.如果两条直线没有公共点,那么这两条直线互相平行
D.有一组邻边相等的矩形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A,B两点(点B在点A的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的⊙M经过点C.
(1)请直接写出C,D的坐标(用含a的代数式表示);
(2)求抛物线的函数表达式;
(3)⊙M上是否存在点E,使得∠EDB=∠CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示线段, 与之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).
(1)求A、B的坐标;
(2)利用函数图象,写出y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根
(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求直线BD的解析式;
(4)在x轴上是否存在P,使以O、B、P三点为顶点的三角形与△ABC相似?若存在,请直接写出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com