精英家教网 > 初中数学 > 题目详情
对于二次函数y=3x2,y=-3x2和y=x2,下列说法中正确的是( )
A.开口都向上,且都关于y轴对称
B.开口都向上,且都关于x轴对称
C.顶点都是原点,且都关于y轴对称
D.顶点都是原点,且都关于x轴对称
【答案】分析:先根据解析式中的a值判断抛物线的开口方向,并由解析式求出原点坐标.
解答:解:在函数y=3x2,y=-3x2和y=x2,中,a取值范围分别为:a=3>0,a=-3<0,a=>0,
∴抛物线的开口方向分别为:向上、向下、向上;
由函数y=3x2,y=-3x2和y=x2,的解析式可知:顶点坐标都为(0,0),对称轴x=0;
∴他们共同的特点是都关于y轴对称,抛物线的顶点都是原点.
故选C.
点评:考查二次函数的图象与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向
 
,再向下平移7单位,相应的朋友距离为
 

(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是
(1,-2)
(1,-2)

(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=-x2-3x-2,当自变量x>0时,图象在第(  )象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题
对于二次函数y=-x2+8x-6和一次函数y=3x-4,把y=t(-x2+8x-6)+(2-3t)(3x-4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线C.现有点A(2,4)和抛物线C上的点B(-3,n),请完成下列任务:
【尝试】
(1)判断点A是否在抛物线C上;
(2)求n的值
【发现】
     通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线C总过固定的两点,则这两点的坐标分别是
(2,4),(-3,-26)
(2,4),(-3,-26)

【应用】
     二次函数y=4x2-6x+9是二次函数y=-x2+8x-6和一次函数y=3x-4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=x2-3x+2,当x=1时,y的值为
0
0

查看答案和解析>>

同步练习册答案