精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A在抛物线yx22x+2上运动.过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____

【答案】1

【解析】

先利用配方法得到抛物线的顶点坐标为(11),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1,从而得到BD的最小值.

y=x22x+2=(x1)2+1

∴抛物线的顶点坐标为(11),

∵四边形ABCD为矩形,

BD=AC

ACx轴,

AC的长等于点A的纵坐标,

当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1

∴对角线BD的最小值为1

故答案为:1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)证明推断:如图(1),在正方形ABCD中,点EQ分别在边BCAB上,DQAE于点O,点GF分别在边CDAB上,GFAE

①求证:DQAE

②推断:的值为   

2)类比探究:如图(2),在矩形ABCD中,kk为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPGEPCD于点H,连接AEGF于点O.试探究GFAE之间的数量关系,并说明理由;

3)拓展应用:在(2)的条件下,连接CP,当k时,若tanCGPGF2,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图①,直线l1l2l3,点Cl2上,以点C为直角顶点作∠ACB90°,角的两边分别交l1l3于点AB,连结AB,过点CCDl1于点D,延长DCl3于点E

1)求证:ACD∽△CBE

2)应用:如图②,在图①的基础上,设ABl2的交点为F,若ACBCl1l2之间的距离为2l2l3之间的距离为1,则AF的长度是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店老板到厂家选购两种品牌的羽绒服,品牌羽绒服每件进价比品牌羽绒服每件进价多元,若用元购进种羽绒服的数量是用元购进种羽绒服数量的.

1)求两种品牌羽绒服每件进价分别为多少元?

2)若品牌羽绒服每件售价为元,品牌羽绒服每件售价为元,服装店老板决定一次性购进两种品牌羽绒服共件,在这批羽绒服全部出售后所获利润不低于元,则最少购进品牌羽绒服多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的直径的延长线上,点上,且AC=CD∠ACD=120°.

1)求证:的切线;

2)若的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小区要用篱笆围成一个四边形花坛、花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米.围成的花坛是如图所示的四边形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.设AB边的长为x米.四边形ABCD面积为S平方米.

(1)请直接写出Sx之间的函数关系式(不要求写出自变量x的取值范围).

(2)当x是多少时,四边形ABCD面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 AB 均在小正方形的顶点上.

1)在图中画出以 AB 为一腰的等腰ABC,点 C 在小正方形顶点上,ABC 为钝角三角形,且ABC 的面积为

2)在图中画出以 AB 为斜边的直角三角形 ABD D在小正方形的顶点上,且 AD>BD

3)连接 CD,请你直接写出线段 CD 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB与抛物线Cyax2+2x+c相交于点A(10)和点B(23)两点.

(1)求抛物线C函数表达式;

(2)若点M是位于直线AB上方抛物线上的一动点,当的面积最大时,求此时的面积S及点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB6EAB的中点,将△ADE沿DE翻折得到△FDE,延长EFBCGFHBC,垂足为H,连接BFDG.以下结论:BFEDDFG≌△DCGFHB∽△EADtan∠GEBSBFG2.6;其中正确的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步练习册答案