精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.

(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.

【答案】
(1)

解:∵直线y=x﹣3经过B、C两点,

∴B(3,0),C(0,﹣3),

∵y=x2+bx+c经过B、C两点,

解得

故抛物线的解析式为y=x2﹣2x﹣3;


(2)

解:如图1,y=x2﹣2x﹣3,

y=0时,x2﹣2x﹣3=0,

解得x1=﹣1,x2=3,

∴A(﹣1,0),

∴OA=1,OB=OC=3,

∴∠ABC=45°,AC= ,AB=4,

∵PE⊥x轴,

∴∠EMB=∠EBM=45°,

∵点P的横坐标为1,

∴EM=EB=3﹣t,

连结AM,

∵SABC=SAMC+SAMB

ABOC= ACMN+ ABEM,

×4×3= × d+ ×4(3﹣t),

∴d= t;


(3)

解:如图2,

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴对称轴为x=1,

∴由抛物线对称性可得D(2,﹣3),

∴CD=2,

过点B作BK⊥CD交直线CD于点K,

∴四边形OCKB为正方形,

∴∠OBK=90°,CK=OB=BK=3,

∴DK=1,

∵BQ⊥CP,

∴∠CQB=90°,

过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,

∴∠OHC=∠OIQ=∠OIB=90°,

∴四边形OHQI为矩形,

∵∠OCQ+∠OBQ=180°,

∴∠OBQ=∠OCH,

∴△OBQ≌△OCH,

∴QG=OS,∠GOB=∠SOC,

∴∠SOG=90°,

∴∠ROG=45°,

∵OR=OR,

∴△OSR≌△OGR,

∴SR=GR,

∴SR=CS+BR,

∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,

∴∠BOR=∠TBK,

∴tan∠BOR=tan∠TBK,

=

∴BR=TK,

∵∠CTQ=∠BTK,

∴∠QCT=∠TBK,

∴tan∠QCT=tan∠TBK,

设ST=TD=m,

∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,

在Rt△SKR中,

∵SK2+RK2=SR2

∴(2m+1)2+(2﹣m)2=(3﹣m)2

解得m1=﹣2(舍去),m2=

∴ST=TD= ,TK=

∴tan∠TBK= = ÷3=

∴tan∠PCD=

过点P作PE′⊥x轴于E′交CD于点F′,

∵CF′=OE′=t,

∴PF′= t,

∴PE′= t+3,

∴P(t,﹣ t﹣3),

∴﹣ t﹣3=t2﹣2t﹣3,

解得t1=0(舍去),t2=

∴MN=d= t= × =


【解析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据SABC=SAMC+SAMB , 由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD= ,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣ t﹣3),可得﹣ t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】点P到∠AOB的距离定义如下:点Q为∠AOB的两边上的动点,当PQ最小时,我们称此时PQ的长度为点P到∠AOB的距离,记为d(P,∠AOB).特别的,当点P在∠AOB的边上时,d(P,∠AOB)=0.在平面直角坐标系xOy中,A(4,0).
(1)如图1,若M(0,2),N(﹣1,0),则d(M,∠AOB)= , d(N,∠AOB)=
(2)在正方形OABC中,点B(4,4).如图2,若点P在直线y=3x+4上,且d(P,∠AOB)=2 ,求点P的坐标;
(3)如图3,若点P在抛物线y=x2﹣4上,满足d(P,∠AOB)=2 的点P有个,请你画出示意图,并标出点P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在半径为1的⊙O中,弦AB、AC的长分别为1和 ,则∠BAC的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是件,日销售利润是元.
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.

(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB= ,连接CD,请直接写出线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)求扇形统计图中m的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)王老师一共调查了多少名同学?
(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;
(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的不等式 的整数解共有4个,则m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2= (x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是(填写正确结论的序号).

查看答案和解析>>

同步练习册答案