精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,DEF 分别为边 ABACBC 上的点,连接 DEEF.若 DEBCEFAB,则图中共有________对相似三角形.

【答案】3

【解析】

首先根据DEBC可以得出∠ADE=B,∠AED=C,然后根据EFAB可以得出∠FEC=A,∠EFC=B,利用以上条件再结合相似三角形判定定理进一步求解即可.

DEBC

∴∠ADE=B,∠AED=C

EFAB

∴∠FEC=A,∠EFC=B

在△ADE与△ABC中,

∵∠A=A,∠ADE=B

∴△ADE~ABC

在△ADE与△EFC中,

∵∠FEC=A,∠AED=C

∴△ADE~EFC

在△ABC与△EFC中,

∵∠FEC=A,∠C=C

∴△ABC~EFC

综上所述,共有三对相似三角形,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB8AD10ECD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AEBC的延长线于点G

1)求线段CE的长;

2)如图2MN分别是线段AGDG上的动点(与端点不重合),且∠DMN=∠DAM,设AMxDNy

写出y关于x的函数解析式,并求出y的最小值;

是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点EBC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AEAF.若AB=2B=60°,则阴影部分的面积为(  )

A.B.

C.2–πD.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).

(1)求抛物线的解析式;

(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;

(3)点Py轴右侧抛物线上一动点,连接PA,过点PPQPAy轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商投产一种新型电子产品,每件制造成本为16元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)

1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

2)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线 yax2bx1 经过 A(10)B(13)两点.

1)求 ab 的值;

2)以线段 AB 为边作正方形 ABBA,能否将已知抛物线平移,使其经过 AB两点?若能,求出平移后经过 AB两点的抛物线的解析式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EFAB上.

(1)求证:△AED∽△DCG;

(2)若矩形DEFG的面积为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2.

(1)第一批饮料进货单价多少元?

(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数ymxn与反比例函数y同时经过点P(xy)则称二次函数ymx2nxk为一次函数与反比例函数的“共享函数”,称点P为共享点.

1)判断y2x1y是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由;

2)已知:整数mnt满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y存在“共享函数”y=(m+t)x2+(10mt)x2020,求m的值.

3)若一次函数yxm和反比例函数y在自变量x的值满足mxm6的情况下,其“共享函数”的最小值为3,求其“共享函数”的解析式.

查看答案和解析>>

同步练习册答案