精英家教网 > 初中数学 > 题目详情

如图,点E是DF上一点,点B在AC上,∠1=∠2,∠C=∠D,试说明DF∥AC的理由。

理由:∵∠1=∠2 (已知)
∠1=∠3,∠2=∠4 (                  )
∴∠3=∠4 (                  )
∴______∥______ (                              )
∴∠C=∠DBA (                              )
又∵∠C=∠D ( 已知 )
∴∠DBA=∠D (                     )
∴DF∥AC (                               )

对顶角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行

解析试题分析:根据平行线的判定与性质依次分析即可得到结果.
理由:∵∠1=∠2 (已知)
∠1=∠3,∠2=∠4 (对顶角相等)
∴∠3=∠4 (等量代换)
∴BD∥CE(内错角相等,两直线平行)
∴∠C=∠DBA (两直线平行,同位角相等)
又∵∠C=∠D ( 已知 )
∴∠DBA=∠D (等量代换)
∴DF∥AC (内错角相等,两直线平行).
考点:平行线的判定与性质
点评:平行线的判定与性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且精英家教网抛物线对称轴为直线x=-3.
(1)求该抛物线的函数表达式;
(2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=
25
DF
,求出此时点M的坐标;
(3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、将两个等边△ABC和△DEF(DE>AB)如图所示摆放,点D是BC上的一点(除B、C点外).把△DEF绕顶点D顺时针旋转一定的角度,使得边DE、DF与△ABC的边(除BC边外)分别相交于点M、N.
(1)∠BMD和∠CDN相等吗?
(2)画出使∠BMD和∠CDN相等的所有情况的图形;
(3)在(2)题中任选一种图形说明∠BMD和∠CDN相等的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

1.研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?

2.请你说明:三角形的中线是否也是该三角形的黄金分割线?

3.研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.

4.如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.

 

查看答案和解析>>

科目:初中数学 来源:2011~2012学年江苏苏州八年级下期期末复习(一)数学试卷(带解析) 题型:解答题

如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.
【小题1】研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
【小题2】请你说明:三角形的中线是否也是该三角形的黄金分割线?
【小题3】研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.
【小题4】如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.

查看答案和解析>>

科目:初中数学 来源:2013届江苏苏州八年级下期期末复习(一)数学试卷(解析版) 题型:解答题

如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

1.研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?

2.请你说明:三角形的中线是否也是该三角形的黄金分割线?

3.研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.

4.如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.

 

查看答案和解析>>

同步练习册答案