分析 连接BC、OD、BD,如图,根据圆周角定理得∠ACB=∠ADB=90°,在Rt△ACB中利用勾股定理计算出BC=8,由于∠CAD=∠BAD,根据圆周角定理得到弧CD=弧BD,再根据垂径定理的推理得OD垂直平分BC,则OE=$\frac{1}{2}$AC=3,BE=$\frac{1}{2}$BC=4,所以DE=OD-OE=2,在Rt△BDE中利用勾股定理计算出BD=2$\sqrt{5}$,然后在Rt△ADB中利用勾股定理可计算出AD.
解答 解:连接BC、OD、BD,如图,
∵AB为半圆O的直径,
∴∠ACB=∠ADB=90°,
在Rt△ACB中,∵AB=10,AC=6,
∴BC=$\sqrt{{1{0}^{2}-6}^{2}}$=8,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴$\widehat{CD}$=$\widehat{BD}$,
∴OD垂直平分BC,
∴OE=$\frac{1}{2}$AC=3,BE=$\frac{1}{2}$BC=4,
∴DE=OD-OE=2,
在Rt△BDE中,BD=$\sqrt{B{E}^{2}+D{E}^{2}}$=2$\sqrt{5}$cm,
在Rt△ADB中,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4$\sqrt{5}$cm.
点评 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com