精英家教网 > 初中数学 > 题目详情
如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),函数y=
kx
(x<0)
的图象过点P,求k的值.
分析:过P作PQ垂直于y轴,利用垂径定理得到Q为MN的中点,由M与N的坐标得到OM与ON的长,由OM-ON求出MN的长,确定出MQ的长,在直角三角形PMQ中,由PM与MQ的长,利用勾股定理求出PQ的长,由OM+MQ求出OQ的长,再由P在第三象限求出P的坐标,将P的坐标代入反比例解析式中,即可求出k的值.
解答:解:过P作PQ⊥y轴,与y轴交于Q点,连接PM,
∴Q为MN的中点,
∵M(0,-4),N(0,-10),
∴OM=4,ON=10,
∴MN=10-4=6,
∴MQ=NQ=3,OQ=OM+MQ=4+3=7,
在Rt△PMQ中,PM=5,MQ=3,
根据勾股定理得:PQ=
PM2-MQ2
=4,
∴P(-4,-7),
将x=-4,y=-7代入反比例函数y=
k
x
中得:-7=
k
-4

则k=28.
点评:此题考查了垂径定理,勾股定理,坐标与图形性质,以及待定系数法确定函数解析式,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,半径为1的⊙D内切于圆心角为60°的扇形OAB,
求:(1)弧AB的长;(2)阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,半径为4的两等圆相外切,它们的一条外公切线与两圆围成的阴影部分中,存在的最大圆的半径等于
1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,半径为30km 的圆A是环保部分划定的生态保护区,B、C是位于保护区附近相距100km的两城市.如果在 B、C两城之间修一条笔直的公路,经测量∠ABC=45°,∠ACB=30°.
问:此公路是否会穿过保护区,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为
32π
32π

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)如图,半径为2的两个等圆⊙O1与⊙O2外切于点P,过O1作⊙O2的两条切线,切点分别为A、B,与⊙O1分别交于C、D,则弧APB与弧CPD的长度之和为

查看答案和解析>>

同步练习册答案