精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
x-10134
y800
(1)抛物线的对称轴是______.点A(______,______),B(______,______);
(2)求二次函数y=ax2+bx+3的解析式;
(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?

解:(1)根据当x=1和3时,y=0,得出抛物线的对称轴是:直线x=2,
∵抛物线y=ax2+bx+3与y轴的交点为A,
∴x=0时,y=3,则点A( 0,3 ),故B(4,3 );

(2)图象过(1,0),(3,0),
设抛物线为y=a(x-1)(x-3),
把(0,3)代入可得:3=a(0-1)(0-3),
解得:a=1,
故二次函数y=ax2+bx+3的解析式为:y=(x-1)(x-3)=x2-4x+3;

(3)如图1,∵AB∥x轴,AB=4,
当0<m<4时,点M到AB的距离为3-n,
∴S△ADM=(3-n)×4=6-2n,
又∵n=m2-4m+3,S1=-2m2+8m,
∴当m<0或m>4时,点M到直线AB的距离为n-3,S2=×4(n-3)=2n-6,
而 n=m2-4m+3,S2=2m2-8m,
S=
故函数图象如图2(x轴上方部分)所示,S不存在最大值,从图象可知:当m<0或m>4时,S的值可以无限大.
分析:(1)利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,再利用x=0时,y=3,则点A( 0,3 ),即可得出B点坐标;
(2)根据图象过(1,0),(3,0)则设抛物线为y=a(x-1)(x-3),把(0,3)代入可得出a的值,进而得出解析式;
(3)当0<m<4时,点M到AB的距离为3-n,当m<0或m>4时,点M到直线AB的距离为n-3,利用三角形面积得出S与m的函数关系式,利用图象得出S是否存在最大值.
点评:此题主要考查了二次函数的对称性以及利用交点式求函数解析式和三角形面积求法等知识,利用数形结合得出函数值的情况是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案