【题目】如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置
(1)若点坐标为时,求点的坐标;
(2)若点和点在同一个反比例函数的图象上,求点坐标;
(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由
【答案】(1);(2);(3)存在,或
【解析】
(1)过点作轴于点,利用三角函数值可得出,再根据翻折的性质可得出,,再解,得出,,最后结合点C的坐标即可得出答案;
(2)设点坐标为(),则点的坐标是,利用(1)得出的结果作为已知条件,可得出点D的坐标为,再结合反比例函数求解即可;
(3)首先存在这样的k值,分和两种情况讨论分析即可.
解:(1)如图,过点作轴于点
∵,
∴
∴
由题意可知,.
∴.
∴
在中,,
∴,.
∵点坐标为,
∴.
∴点的坐标是
(2)设点坐标为(),则点的坐标是,
由(1)可知:点的坐标是
∵点和点在同一个反比例函数的图象上,
∴.解得.
∴点坐标为
(3)存在这样的,使得以点,,为顶点的三角形是直角三角形
解:①当时.
如图所示,连接,,,与相交于点.
则,,.
∴∽
∴
∴
又∵,
∴∽.
∴,,
∴.
∴,
设(),则,
∵,在同一反比例函数图象上,
∴.解得:.
∴
∴
②当时.如图所示,连接,,,
∵,
∴.
在中,
∵,,
∴.
在中,
∵,
∴.
∴
设(),则
∵,在同一反比例函数图象上,
∴.
解得:,
∴
∴
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.
(1)求两种机器人每小时分别搬运多少吨化工原料.
(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.
(1)求该抛物线的解析式;
(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;
(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③a﹣b+c>0;④当x≠1时,a+b>ax2+bx;⑤4ac<b2.其中正确的有( )个
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com