解:(1)证明:∵四边形ABCD为正方形,
∴∠B=∠C=90°,
∵∠AMB+∠BAM=90°,又∴AM⊥MN,
∴∠AMN=90°,∴∠AMB+∠NMC=90°,
∴∠BAM=∠NMC,∴Rt△ABM∽Rt△MCN;
(2)AM=PM.证明:∵四边形ABCD为正方形,
∴AB=BC,∠B=∠BCD=90°,∴AH=MC,
∵BH=BM,
∴∠BMH=∠BHM=45°,
∠AHM=135°,∵AM⊥MN,∴∠2+∠3+∠BMH=90°,
∵∠2+∠3=45°,∴∠1+∠2=∠BHM=45°,∴∠1=∠3,
∵CP是正方形外角平分线,∴∠PCN=45°,
∴∠PCM=90°+45°=135°,
∴∠AHM=∠MCP,在△AHM和△MCP中,
∵,
∴△AHM∽△MCP(ASA),
∴AM=PM;
(3)解:∵正方形ABCD边长为4,BM=1,
∴CM=4-1=3,
∵Rt△ABM∽Rt△MCN,∴,即,
∴CN=,
∴S梯形ABCN=(AB+CN)BC=×(4+)×4=;
∴正方形ABCD边长为4,BM=x,∴CM=4﹣x,
∴Rt△ABM∽Rt△MCN,∴,即,∴CN=,
∴y=S梯形ABCN=(AB+CN)BC=×(4+)×4=﹣x2+2x+8=﹣(x﹣2)2+10,
∵当x=2时,四边形ABCN的面积最大,最大面积为10;
(4)解:∵∠B=∠AMN=90°,
∴要使Rt△ABM∽Rt△AMN,必须有,即,
∵Rt△ABM∽Rt△MCN,
∴,∴BM=MC,
∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时BM=2
.
科目:初中数学 来源: 题型:
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com