精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则的函数关系图象大致为(

A.B.

C.D.

【答案】C

【解析】

根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.

解:∵菱形ABCD的边长为4cm,∠A=60°,动点PQ同时从点A出发,都以1cms的速度分别沿ABCADC的路径向点C运动,
∴△ABD是等边三角形,
∴当0x4时,
y=×4×4×sin60°xsin60°x=4x2=x2+4
4x8时,
y=×4×4×sin60°×(8x)×(8x)×sin60°

=x2+4x12

=(x8)2+4

∴选项C中函数图像符合题意,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为的正方形的对角线交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕于点,则

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下表所示,有AB两组数:

1个数

2个数

3个数

4个数

……

9个数

……

n个数

A

6

5

2

……

58

……

n22n5

B

1

4

7

10

……

25

……

1A组第4个数是   

2)用含n的代数式表示B组第n个数是   ,并简述理由;

3)在这两组数中,是否存在同一列上的两个数相等,请说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yx2+bx的图象如图,对称轴为x1.若关于x的一元二次方程x2+bx2t0t为实数)在﹣1x≤4的范围内有解,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,直线轴交于点轴左侧抛物线交于点,直线轴右侧抛物线交于点.

(1)求抛物线的解析式;

(2)是直线上方抛物线上一动点,求面积的最大值;

(3)是抛物线上一动点,点是抛物线对称轴上一动点,请直接写出以点为顶点的四边形是平行四边形时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ABC的角平分线BEAD交于点E,∠BED的角平分线EFDC交于点F,若AB=8DF=3FC,则BC=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接边长为的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于(

A.B.C.D.

查看答案和解析>>

同步练习册答案