精英家教网 > 初中数学 > 题目详情
如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=(  )
分析:根据全等三角形性质求出∠EAD、∠CAB,根据三角形内角和定理求出∠AFB,根据对顶角相等求出∠GFD,在△DGF中,根据三角形的外角性质求出即可
解答:解:∵△ABC≌△ADE,∠CAD=10°,∠EAB=120°,
∴∠EAD=∠CAB=
1
2
(∠EAB-∠CAD)=55°,
∵∠FAB=∠CAD+∠CAB,
∴∠FAB=65°,
∵∠AFB+∠FAB+∠B=180°,
∴∠AFB=180°-65°-25°=90°,
∵∠GFD=∠AFB,
∴∠GFD=90°,
∵∠EGF=∠D+∠GFD,
∴∠EGF=90°+25°=115°.
故选C.
点评:本题考查了对顶角,全等三角形性质,三角形的内角和定理,三角形的外角性质等知识点的运用,关键是求出∠DFG的度数,主要培养学生运用定理进行推理和计算的能力,题目比较典型,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案