精英家教网 > 初中数学 > 题目详情
20.如图,矩形ABOE的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2$\sqrt{3}$,反比例函数y=$\frac{k}{x}$(x>0)的图象经过OA的中点C,交AB于点D.
(1)求反比例函数的解析式;
(2)连接CD,求四边形CDBO的面积;
(3)AE与反比例函数交于点F,连接OF,△AOF是等腰三角形吗?为什么?

分析 (1)先求出OA,进而求出点A的坐标,即可得出点C的坐标,即可得出反比例函数解析式;
(2)先求出OG,CG,BG,BD,利用三角形和梯形的面积之和即可得出结论;
(3)先求出点F的坐标,进而求出OF,AF,OC,即可判断△AOF不是等腰三角形.

解答 解:(1)在Rt△AOB中,∠AOB=30°,OB=2$\sqrt{3}$,
∴AB=2,
∴A(2$\sqrt{3}$,2),
∵C是OA的中点,
∴C($\sqrt{3}$,1),
∵点C在反比例函数y=$\frac{k}{x}$的图象上,
∴k=$\sqrt{3}$×1=$\sqrt{3}$,
∴反比例函数的解析式为y=$\frac{\sqrt{3}}{x}$,
(2)如图1,

过点C作CG⊥OB,
∵C($\sqrt{3}$,1),
∴G($\sqrt{3}$,0),
∴OG=$\sqrt{3}$,CG=1,
将x=2$\sqrt{3}$代入y=$\frac{\sqrt{3}}{x}$中,得y=$\frac{1}{2}$,
∴BD=$\frac{1}{2}$,BG=$\sqrt{3}$,
∴S四边形CDBO=S△OCG+S梯形BDCG=$\frac{1}{2}$OG•CG+$\frac{1}{2}$(CG+BD)•BG=$\frac{1}{2}$×$\sqrt{3}$×1+$\frac{1}{2}$×(1+$\frac{1}{2}$)×$\sqrt{3}$=$\frac{5\sqrt{3}}{4}$;
(3)△AOF不是等腰三角形,
由题意知,E(0,2),
由(1)知反比例函数的解析式为y=$\frac{\sqrt{3}}{x}$,
∴F($\frac{\sqrt{3}}{2}$,2),OF=$\frac{\sqrt{19}}{2}$,
∵A(2$\sqrt{3}$,2),
∴AF=$\frac{3\sqrt{3}}{2}$,
∵OC=4,
∴OF≠AF≠OC,
∴△AOF不是等腰三角形.

点评 此题是反比例函数综合题,主要考查了解直角三角形,待定系数法,几何图形的面积的求法,等腰三角形的判断方法,解(1)的关键是求出点A的坐标,解(2)的关键是作出辅助线将四边形CDBO分割成直角三角形和梯形,解(3)的关键是求出点F的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.定义两个实数间的一种运算“*”,这种运算同时满足下列三个条件:①a*b=b*a,②a*0=a,③(a*b)*c=c*a+c*(ab)-2c.有下列结论:
①3*1=6;②4*2=12;③(2*3)*0=0;④当x为实数时,有x*$\frac{1}{x}$=x+1.
其中正确的是①②④.(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在矩形ABCD中,AB=6,AD=8,点P是BC中点,点E、F是边CD上的任意两点,且EF=2,当四边形APEF的周长最小时,则DF的长为(  )
A.2B.4C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图1,菱形ABCD的边长为4cm,P、Q分别是AB、BC两边上的动点,P、Q分别从A、B两点同时出发,均以1cm/s的速度沿AB、BC向点B和点C匀速运动,当点P到达点B时停止运动,点Q也随之停止运动.设运动时间为t(s),点P到AD的距离与点Q到CD的距离差的绝对值为y(cm),且y与t的函数图象如图2所示.

(1)∠A的度数为60°,M点的坐标所表示的实际意义是点P到AD的距离和点Q到CD的距离相等;
(2)求证:PD=QD;
(3)当y=$\frac{\sqrt{3}}{2}$时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列实数中,有理数是(  )
A.$\sqrt{2}$B.$\root{3}{4}$C.$\frac{π}{2}$D.0.101001

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在四边形ABCD中,AC⊥BD于点O,AC=6,四边形ABCD的面积为24.
(1)如图1,求BD的长;
(2)如图2,若AD=5,AD∥BC,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.矩形ABCD中,BC=3,AB=8,E、F为AB、CD边上的中点,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若点A从原点出发,沿x轴向右以每秒1个单位长度的速度运动,则点B随之沿y轴下滑,并带动矩形ABCD在平面上滑动,如图2,设运动时间表示为t秒,当B到达原点时停止运动.
(1)当t=0时,求点F的坐标及FA的长度;
(2)当t=4时,求OE的长及∠BAO的大小;
(3)求从t=0到t=4这一时段点E运动路线的长;
(4)当以点F为圆心,FA为半径的圆与坐标轴相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.能说明命题“若0<α<90°,则2sinα≥1”是假命题,可以举的反例是(  )
A.α=20°B.α=30°C.α=35°D.α=40°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知x、y互为倒数,c、d互为相反数,a的绝对值为3,z的算术平方根是5,求(c+d)(c-d)+xy+$\frac{\sqrt{z}}{a}$的值.

查看答案和解析>>

同步练习册答案