精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连结BF与DE相交于点G,连结CG与BD相交于点H.下列结论:①∠EGB=60°;②CG=DG+BG;③若AD=3DF,则BG=6GF.其中正确的结论有
A.   ①②             B.  ①③         C.  ②③        D. ①②③

D

解析试题分析:①∵ABCD为菱形,
∴AB=AD.
∵AB=BD,
∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
∴∠AED=∠BFD
∴△ADE~△DGF
∴∠A=∠DGF=60°
∴∠DGF= ∠EGB =60°
②延长FB到G',取BG'=DG,连接CG',易证出△CDG≌△CBG'(SAS)
∴∠DCG=∠BCG',CG=CG' ∠DCB=∠GCB+∠BCG'=60°,
∴△CGG'为等边三角形
∴CG=GG'
="BG+B" G'
=BG+DG
③∵△AED≌△DFB,AF=2DF.
易证△DFG∽△DEA ∴FG:AE=DF:DA=1:3,
则 FG:BE=1:6=FG:BG,即 BG=6GF.
考点: 菱形、三角形
点评:此题比较综合,考察学生对菱形的性质,三角形的相似与全等等知识点,要求学生对知识点的掌握并灵活运用。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案