精英家教网 > 初中数学 > 题目详情
如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?
(1)解方程组
y=x
y=-2x+6

消去y得:-2x+6=x,解得x=2,
把x=2代入y=x得:y=2,
所以
x=2
y=2

则C点的坐标是(2,2).

(2)过点C作CD⊥x轴于D,
当0<x≤2时,设直线l与OC交于点M,
PM
CD
=
OP
OD
,即
PM
2
=
x
2

则PM=x,
则S=
1
2
OP•PM=
1
2
x2
当2<x<3时,△ODC的面积是
1
2
×2×2=2,
∵OP=x,OD=2,则PD=x-2,CD=2,PN=-2x+6,
则梯形PNCD的面积为
1
2
×(-2x+6+2)×(x-2)=(-x+4)(x-2),
因而函数解析式是s=2+(-x+4)(x-2)=-x2+6x-6;

(4)当0<x≤2时,解方程
1
2
x2=
3
2
,解得x=
3

当2<x<3时,(3-x)2=
3
2

解得x=
6-
6
2
(舍去),x=
6+
6
2
(舍去).
总之,当x=
3
时,直线l平分△OBC的面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

直线y=1.5x-3分别交x,y轴于A、B两点,O是原点.
(1)求出A、B两点的坐标;
(2)求△AOB的面积;
(3)过△AOB的顶点能不能画出直线把△AOB分成面积相等的两部分?若能,可以画出几条?请任选一条求出该直线所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若一次函数y=-
3
4
x+b(b>0)与x,y轴分别交于A,B两点,
(1)直接写出A、B两点的坐标(用含b的代数式表示)
(2)当b=2时,求△OAB的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过研究发现:学生的注意力随老师讲课时间变化而变化.讲课开始时,学生的兴趣激增,中间一段时间,学生注意力保持较理想状态,随后学生的注意力开始分散.学生的注意力y随时间x(分钟)变化的图象如图所示,当0≤x≤10时图象是抛物线的一部分,当10≤x≤20,20≤x≤40时,图象都是线段.
(1)开始多少分钟时,学生的注意力最强?能保持多少时间?
(2)x在什么范围内,学生的注意力随老师讲课时间增加而逐渐增强?x在什么范围内,学生的注意力随老师讲课时间增加而逐渐降低?
(3)当20≤x≤40时,求注意力y随与时间x(分钟)的函数关系式?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2-14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O?B?A以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

拖拉机刚开始工作时,油箱中有40升油,且工作每小时耗油5升.
(1)请写出拖拉机邮箱中的余油量Q(升)与工作时间t(小时)的函数关系式;
(2)求出自变量t的取值范围;
(3)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,直线y=x+1与y=-
3
4
x+3
分别交x轴于点B和点C,点D是直线y=-
3
4
x+3
与y轴的交点.
(1)求点B、C、D的坐标;
(2)设M(x,y)是直线y=x+1上一点,△BCM的面积为S,请写出S与x的函数关系式;来探究当点M运动到什么位置时,△BCM的面积为10,并说明理由.
(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A?B?C方向以每秒2cm的速度运动,到点C停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2
(1)当0≤x≤1时,求y与x之间的函数关系式;
(2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一个长方形周长为60米.求它三长y(米)与宽x(米)之间三函数关系式,并指出关系式二三自变量与函数.

查看答案和解析>>

同步练习册答案