精英家教网 > 初中数学 > 题目详情

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

(1)或3;(2);(3).

解析试题分析:(1)分两种情况考虑:(i)当PQ⊥BC时,如图所示,由速度是1厘米/秒,时间是t秒,利用速度×时间=路程表示出AP与BQ的长,再由AB-AP表示BP,由三角形ABC为等边三角形,得到∠B=60°,在直角三角形BPQ中,利用锐角三角函数定义及特殊角的三角函数值列出关于t的方程,求出方程的解即可得到t的值;(ii)当QP⊥AB时,如图所示,由速度是1厘米/秒,时间是t秒,利用速度×时间=路程表示出AP与BQ的长,再由AB-AP表示BP,由三角形ABC为等边三角形,得到∠B=60°,在直角三角形BPQ中,利用锐角三角函数定义及特殊角的三角函数值列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.
(2)根据∠B为60°特殊角,过Q作QE⊥AB,垂足为E,则BQ、BP、高EQ的长可用t表示,S与t的函数关系式也可求;
(3)由题目线段的长度可证得△CRQ为等边三角形,进而得出四边形EPRQ是矩形,由△APR∽△PRQ,可得出∠QPR=60°,利用60°的特殊角列出一方程即可求得t的值.
试题解析:(1)分两种情况考虑:(i)当PQ⊥BC时,如图1所示:

由题意可得:AP=tcm,BQ=2t厘米,BP=(6-t)厘米,
∵△ABC为等边三角形,
∴∠B=60°,
在Rt△BPQ中,

解得:t=(秒);
(ii)当QP⊥AB时,如图2所示:

由题意可得:AP=tcm,BQ=2t厘米,BP=(6-2t)厘米,
∵△ABC为等边三角形,
∴∠B=60°,
在Rt△BPQ中,,即
解得:t=3(秒),
综上所述,t=或3时,△BPQ为直角三解形;
(2)如图3,过Q作QE⊥AB,垂足为E

由QB=2t,得QE=2t•sin60°=
由AP=t,得PB=6-t
∴S△BPQ=×BP×QE=(6-t)×=
(3)如图4,∵QR∥BA,

∴∠QRC=∠A=60°,∠RQC=∠B=60°
∴△QRC是等边三角形,
∴QR=RC=QC=6-2t,
∵BE=BQ•cos60°=×2t=t,
∴EP=AB-AP-BE=6-t-t=6-2t,
∴EP∥QR,EP=QR,
∴四边形EPRQ是平行四边形,
∴PR=EQ=
又∵∠PEQ=90°,
∴∠APR=∠PRQ=90°,
∵△APR∽△PRQ,
∴∠QPR=∠A=60°,
,即
解得
时,△APR∽△PRQ.
考点: 等边三角形的性质;一元一次方程的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,A(-1,1),B(-2,-1).(1)以原点O为位似中心,把线段AB放大到原来的2倍,请在图中画出放大后的线段CD;(2)在(1)的条件下,写出点A的对应点C的坐标为                                ,点B的对应点D的坐标为               

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,点D在边AB上,满足且∠ACD=∠ABC,若AC=2,AD=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在梯形ABCD中,AB//CD,点E在线段DA上,直线CE与BA的延长线交于点G,

(1)求证:△CDE∽△GAE;
(2)当DE:EA=1:2时,过点E作EF//CD交BC于点F且 CD=4,EF=6,求AB的长

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.

(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.

(1)求证:△CED∽△ACD;
(2)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.

(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由。
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G。
求证:BD⊥CF。
(3)在(2)小题的条件下, AC与BG的交点为M, 当AB=4,AD=时,求线段CM的长。

查看答案和解析>>

同步练习册答案