精英家教网 > 初中数学 > 题目详情
如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1m,这时水面宽度为10m.
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.3m的速度上升,从正常水位开始,持续多少小时到达警戒线?
分析:(1)首先设所求抛物线的解析式为:y=ax2(a≠0),再根据题意得到C(-5,-1),利用待定系数法即可得到抛物线解析式;
(2)根据抛物线解析式计算出A点坐标,进而得到F点坐标,然后计算出EF的长,再算出持续时间即可.
解答:解:(1)设所求抛物线的解析式为:y=ax2(a≠0),
∵由CD=10m,CD到拱桥顶E的距离仅为1m,
则C(-5,-1),
把C的坐标分别代入y=ax2得:a=-
1
25

故抛物线的解析式为y=-
1
25
x2

(2)∵AB宽20m,
∴设A(-10,b),
把A点坐标代入抛物线的解析式为y=-
1
25
x2中,
解得:b=-4,
∴F(0,-4),
∴EF=3,
∵水位以每小时0.3m的速度上升,
∴3÷0.3=10(小时),
答:从正常水位开始,持续10小时到达警戒线.
点评:此题主要考查了二次函数的应用,关键是正确得到C点坐标,求出抛物线解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(19):20.5 二次函数的一些应用(解析版) 题型:解答题

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市丰台区中考数学模拟试卷(解析版) 题型:解答题

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?

查看答案和解析>>

科目:初中数学 来源:2009年广东省潮州市潮安县松昌实验学校中考数学一模试卷(解析版) 题型:解答题

(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?

查看答案和解析>>

同步练习册答案