【题目】如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).
(1)当点Q在线段AD上时,用含t的代数式表示QR的长;
(2)求点R运动的路程长;
(3)当点Q在线段AD上时,求S与t之间的函数关系式;
(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.
【答案】(1)证明见解析(2)2+2(3)①S=S菱形APRQ2t2;②S=﹣t2+6t﹣2(4)t=或t=
【解析】
试题分析:(1)易证△APQ是等边三角形,即可得到QR=PQ=AP=2t;
(2)过点A作AG⊥BC于点G,如图②,易得点R运动的路程长是AG+CG,只需求出AG、CG就可解决问题;
(3)四边形APRQ与△ACD重叠部分图形可能是菱形,也可能是五边形,故需分情况讨论,然后运用割补法就可解决问题;
(4)由于直角顶点不确定,故需分情况讨论,只需分∠QRB=90°和∠RQB=90°两种情况讨论,即可解决问题.
试题解析:(1)如图①,
∵△ABC是等边三角形,
∴∠ACB=∠B=60°.
∵PQ∥BC,
∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,
∴△APQ是等边三角形.
∴PQ=AP=2t.
∵△PQR是等边三角形,
∴QR=PQ=2t;
(2)过点A作AG⊥BC于点G,如图②,
则点R运动的路程长是AG+CG.
在Rt△AGC中,∠AGC=90°,sin60°=,cos60°=,AC=4,
∴AG=2,CG=2.
∴点R运动的路程长2+2;
(3)①当0<t≤时,如图③,
S=S菱形APRQ=2×S正△APQ=2××(2t)2=2t2;
②当<t≤1时,如图④
PE=PCsin∠PCE=(4﹣2t)×=2﹣t,
∴ER=PR﹣PE=2t﹣(2﹣t)=3t﹣2,
∴EF=ERtanR=(3t﹣2)
∴S=S菱形APRQ﹣S△REF
=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;
(4)t=或t=
提示:①当∠QRB=90°时,如图⑤,
cos∠RQB=,
∴QB=2QR=2QA,
∴AB=3QA=6t=4,
∴t=;
②当∠RQB=90°时,如图⑥,
同理可得BC=3RC=3PC=3(4﹣2t)=4,
∴t=.
科目:初中数学 来源: 题型:
【题目】某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
测试项目 | |||
测试成绩/分 | |||
甲 | 乙 | 丙 | |
教学能力 | 85 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
组织能力 | 64 | 72 | 84 |
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:
(1)此次调查抽取的学生人数m= 名,其中选择“书法”的学生占抽样人数的百分比n= ;
(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.
(1)如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有____________;
(2)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;
(3)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;
(4)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明解方程的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.
解:方程两边同乘x,得1-(x-2)=1.……①
去括号,得1-x-2=1.……②
合并同类项,得-x-1=1.……③
移项,得-x=2.……④
解得x=-2.……⑤
∴原方程的解为x=-2.……⑥
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).
(1)求圆心C的坐标.
(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.
(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.
(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com